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2 M. ESHAGHI GORDJI, H. FATHI AND S.A.R. HOSSEINIOUN

1. INTRODUCTION

A Hilbert C∗-module is a generalization of a Hilbert space for which the inner product takes
its values in aC∗-algebra instead of the complex numbers. Exactly a pre-HilbertC∗-module
over a (not necessarily unital) C*-algebraA is a rightA-moduleE equipped with anA-valued
mapping〈., .〉 : E × E −→ A with following properties:

(i) 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉 (x, y, z ∈ E, λ ∈ C),
(ii) 〈x, ya〉 = 〈x, y〉a (x, y ∈ E, a ∈ A),

(iii) 〈y, x〉 = 〈x, y〉∗ (x, y ∈ E),
(iv) 〈x, x〉 ≥ 0, (x ∈ E) and if 〈x, x〉 = 0 thenx = 0.

The map〈., .〉 is called theA-valued inner product onE. A pre-HilbertA-module(E , 〈., .〉) is

called HilbertA-module if it is complete with respect to the norm‖ . ‖=‖ 〈., .〉 ‖
1
2
A. We always

suppose that the linear structures ofA andE are compatible.

Although HilbertC∗-modules behave like Hilbert spaces in some ways, some fundamental
and familiar Hilbert space properties do not hold. For example, given a closed submoduleV
of a HilbertC∗-moduleE, defineV ⊥ = {x ∈ E : 〈x, y〉 = 0,∀y ∈ V }. ThenV ⊥ is a closed
submodule, but usuallyE 6= V ⊕ V ⊥.

If I is a closed right ideal ofC∗-algebraA, thenI is a HilbertA-module if we define

〈a, b〉 = a∗b (a, b ∈ I).

In particular anyC∗-algebra is a Hilbert module over itself. On the other hand any Hilbert
module over the complex fieldC is a Hilbert space. Thus HilbertC∗-modules generalize both
C∗-algebras and Hilbert spaces.

As a convention, throughout the present paper we assume thatA is an arbitraryC∗-algebra
andE, F are HilbertA-modules. Since we deal with bounded and unbounded operators at the
same time, we denote bounded operators by capital letters and unbounded operators by lower
case letters. We use the denotationsDom(.), Ker(.) andRan(.) for domain, kernel and range
of operators, respectively.

We denote the set of all boundedA-linear mapsT : E → F for which there is a map
T ∗ : F → E such that the equality〈Tx, y〉 = 〈x, T ∗y〉 holds for anyx ∈ E, y ∈ F by
B(E, F ). The operatorT ∗ is called the adjoint operator ofT . It follows thatT (and alsoT ∗)
is a bounded, linear, A-module map in the sense ofT (xa) = (Tx)a for anyx ∈ E, a ∈ A. We
abbreviateB(E, E), to B(E).

The concept of Moore-Penrose inverse, first defined by E.H. Moore in the framework of
finite matrix, in decade1910−1920 [10] (see also [11]) ;called by him the “general reciprocal".
Then this concept more or less was forgotten and then was rediscovered by R. Penrose in an
algebraic form in 1955 [13]. The equivalence of the two definitions was pointed out by Rado
[14]. Definition of Moore-Penrose inverse for linear operators between Hilbert spaces and
Hilbert C∗-modules is similar:

Definition 1.1. Let T ∈ B(E, F ). The Moore-Penrose inverseT † of T (if exists) is an element
S of B(F, E) which satisfies:

TST = T, STS = S, (TS)∗ = TS, (ST )∗ = ST.

Xu and Sheng ([17] Theorem 2.2) have shown that bounded adjointableA-linear operator
T between two HilbertA-modules admits a bounded Moore-Penrose inverse if and only if the
operatorT has closed range. In which case,T † exists uniquely withT †TT ∗ = T ∗ andT † = 0
onRant(T )⊥.
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C∗-VALUED METRIC PROJECTION 3

Also we have an explicit representation of Moore-Penrose inverse inB(E, F ). If T ∈
B(E, F ) has Moore-Penrose inverseT † ∈ B(F, E) then we have

T † = lim
α→0+

(α1 + T ∗T )−1T ∗ = lim
α→0+

T ∗(α1 + TT ∗)−1.

If we define| x |= 〈x, x〉 1
2 , then| . | is calledA-valued "norm". This is not actually a norm,

since in general the triangle inequality| x + y |≤| x | + | y | is not satisfied (a simple example
presented in [5]).

Kolarec[7] proved that ifx, y ∈ E and|x|, |y| ∈ Z(A)-the center ofA- then

|x + y| ≤ |x|+ |y|.

Also Jiang [6] showed thatA-valued triangle inequality is satisfied if and only if〈E, E〉 is
commutative, where

〈E, E〉 = span{〈x, y〉 : x, y ∈ E}.
In this paper usingA-valued norm, we defineA-valued metric projection, after some useful
results we characterize Moore-penrose inverse of a densely defined operator byA-valued metric
projection. Note that in our approach we do not use the triangle inequality.

2. PRELIMINARIES

In this section we recall some definitions and basic facts about regular operators on Hilbert
A-modules. More details and properties can be found in ([9] chapters 9 and 10) .

We will use the notationt : Dom(t) ⊆ E → F to indicate thatt is anA-linear operator whose
Dom(t) is a dense submodule ofE and whose range is inF . Givent, s : Dom(t), Dom(s) ⊆
E → F , we writes ⊆ t if Dom(s) ⊆ Dom(t) ands(x) = t(x) for all x ∈ Dom(s). A densely
defined operatort : Dom(t) ⊆ E → F is called closed if its graphG(t) = {(x, t(x)) : x ∈
Dom(t)} is a closed submodule of the HilbertA-moduleE ⊕ F . If t is closable, the operator
s : Dom(s) ⊆ E → F with the propertyG(s) = G(t) is called the closure oft denoted by
s = t. The operatort is the smallest closed operator that containst.

A densely defined operatort : Dom(t) ⊆ E → F is called adjointable if it possesses a
densely defined mapt∗ : Dom(t∗) ⊆ F → E with the domain
Dom(t∗) = {y ∈ F : there existsz ∈ E such that〈t(x), y〉F = 〈x, z〉E for anyx ∈ Dom(t)}.
which satisfies the property〈t(x), y〉F = 〈x, t∗(y)〉E, for anyx ∈ Dom(t), y ∈ Dom(t∗). This
property implies thatt∗ is a closedA-linear map.

The composition of two densely defined operatorst, s is the unbounded operatorts with
Dom(ts) = {x ∈ Dom(s) : s(x) ∈ Dom(t)} given by(ts)(x) = t(s(x)) for all x ∈ Dom(ts).
The operatorts is not necessarily densely defined. Suppose two densely defined operatorst, s
are adjointable, thens∗t∗ ⊆ (ts)∗. If T is a bounded adjointable operator, thens∗T ∗ = (Ts)∗.

A densely defined closedA-linear mapt : Dom(t) ⊆ E → F is called regular if it is
adjointable and the operator1+ t∗t has a dense range. We denote the set of all regular operators
from E to F by R(E, F ). A criterion of regularity via the graph of densely defined operators
has been given in [3]. In fact a densely defined operatort with a densely defined adjoint operator
is regular if and only if its graph is orthogonally complemented inE ⊕F . If t is regular thent∗

is regular andt = t∗∗, moreovert∗t is regular and selfadjoint (cf. [9], Corollaries 9.4, 9.6 and
Proposition 9.9).

A regular operatort has closed range if and only if its adjoint operatort∗ has closed range,
and then for|t| := |(t∗t)| 12 the orthogonal sum decompositionsE = Ker(t) ⊕ Ran(t∗) =

Ker(|t|) ⊕ Ran(|t|), F = Ker(t∗) ⊕ Ran(t) = Ker(|t∗|) ⊕ Ran(|t∗|) exist, (cf. Proposition
1.2 of [3] and Result 7.19 of [8]).

The concept of Moore-Penrose inverses of unbounded regular operators, is defined in [4]

AJMAA, Vol. 12, No. 1, Art. 14, pp. 1-9, 2015 AJMAA

http://ajmaa.org


4 M. ESHAGHI GORDJI, H. FATHI AND S.A.R. HOSSEINIOUN

Definition 2.1. Let t ∈ R(E, F ) be a regular operator between two HilbertA-modulesE, F
over some fixedC∗-algebraA. A regular operators ∈ R(F, E) is called the Moore-Penrose
inverse oft if

tst = t, sts = s, (ts)∗ = ts, (st)∗ = st.

If a regular operator t has a generalized inverses, then the above definition implies that
Ran(t) ⊆ Dom(s) andRan(s) ⊆ Dom(t). A fundamental existence theorem for Moore-
Penrose inverse is given in [4] as follows:

Theorem 2.2. If t ∈ R(E, F ), then the following conditions are equivalent:
(i) t andt∗ have unique Moore-Penrose inverses which are adjoint to each other,t† andt†∗.

(ii) E = Ker(t)⊕Ran(t∗) andF = Ker(t∗)⊕Ran(t).

In this situation,t∗t†∗ and tt† are the projections ontoRan(t∗) = Ran(t∗t) and Ran(t), re-
spectively.

Groetsch’s representation for the Moore-Penrose inverse of unbounded regular operatort
between HilbertC∗-modules is given in [15]:

Theorem 2.3. Supposet ∈ R(E, F ) is a regular operator andt and t∗ possess the Moore-
Penrose inversest† andt†∗. Then

(i) t† = limw→0+ t∗(w1 + tt∗)−1 = limw→0+ (w1 + t∗t)−1t∗ onDom(t†).

(ii) t†∗ = limw→0+ t(w1 + t∗t)−1 = limw→0+ (w1 + tt∗)−1t onDom(t†∗).

The Gram operator oft is defined to be the operatort∗t and studied in [12]:

Theorem 2.4.Supposet ∈ R(E, F ), has closed range andRan(t) ⊆ Dom(t∗). Then
(i) t† = (t∗t)†t∗ = t∗(tt∗)†,

(ii) (t∗t)† = t†t†∗.

Note, that boundedA-linear operators may admit generalized inverses in the set of regular
operators even if they do not admit any bounded generalized inverse operator. For examples,
consider contractive operators on Hilbert spaces with dense, but non-closed range.

3. MAIN PART

In [2] usingA-valued norm we definedA-valued metric projection of closed convex subset
K ⊂ E asPA

K : E −→ K,

PA
K(x) = {y0 ∈ K :| x− y0 |2= inf

y∈K
| x− y |2}.

We proved thatPA
K(x) has at most one element. Also we presented a general characterization

of A-valued metric projection as aC∗-valued variational inequality.

Proposition 3.1. Let (E, 〈., .〉) be a HilbertC∗-module andK ⊆ E is a closed, convex and
x ∈ E. The following statements are equivalent:

(i) p ∈ K andRe 〈x− p , p− y〉 ≥ 0 (y ∈ K),
(ii) p = PA

K(x).

Moreover ifK is closed submodule thenp = PA
K(x) if and only ifx− p ∈ K⊥.

Above proposition shows that for a submoduleV of E, PA
V (x) exists for everyx ∈ E if and

only if V is complemented submodule. In fact behavior ofC∗-valued metric projection oper-
ator on a closed complemented submodule is similar to metric projection operator on a closed
subspace of a Hilbert space. We collect some basic facts aboutC∗-valued metric projections
onto closed complemented submodules:
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Corollary 3.2. Let V be a closed complemented submodule ofE and letx ∈ E. Then the
following hold:

(i) PA
V (x) exists and is characterized byPA

V (x) ∈ V andx− PA
V ∈ V ⊥ .

(ii) |PA
V (x)|2 = 〈PA

V (x), x〉.
(iii) PA

V ⊥ = Id− PA
V .

(iv) PA
V is selfadjoint and thus is inB(E), ‖PA

V ‖ = 1 if V 6= 0, and‖PA
V ‖ = 0 if V = 0.

(v) |x|2 = |PA
V (x)|2 + |PA

V ⊥(x)|2.

In this paper we describe Moore-Penrose inverse of a regular operator byC∗-valued metric
projection.

Lemma 3.3. Let K be a nonempty closed convex subset ofE, and letx andy be inE. Then
PA

y+Kx = y + PA
K(x− y).

Proof.

Re〈x− y − PA
K(x− y), y + PA

K(x− y)− (y + z)〉 = Re〈x− y − PA
K(x− y), PA

K(x− y)− z)〉
≥ 0.

and Proposition 3.1 completes the proof.

The next lemma is essential for our main theorem.

Lemma 3.4. Let t ∈ R(E, F ), y ∈ Dom(t∗) and Ran(t) ⊆ Dom(t∗) then for everyx ∈
Dom(t∗t),

t(x) = PA
Ran(t)

(y) ⇔ t∗t(x) = t∗(y).

Proof.

t(x) = PA
Ran(t)

(y) ⇔ 〈r, t(x)− y〉 = 0 (∀r ∈ Ran(t))

⇔ 〈t(z), tx− y〉 = 0 (∀z ∈ Dom(t))

⇔ 〈z, t∗(t(x)− y)〉 = 0 (∀z ∈ Dom(t) = E)

⇔ t∗t(x) = t∗(y).

The next theorem, which is the main theorem of this paper, shows that ift† ∈ R(E, F ) is the
Moore-Penrose inverse oft ∈ R(E, F ) andt∗ has Moore-Penrose inverse, which is adjoint of
t† then for everyy ∈ F , t†(y) can be characterized byPA

Gy
(0) for a special affine subspaceGy

of E (cf. Theorem 2.2).

Theorem 3.5. Suppose thatt ∈ R(E, F ), Ran(t) ⊆ Dom(t∗) andRan(t) andRan(t∗) are
both orthogonally complemented inF andE respectively. Fixy ∈ Dom(t∗). SetGy = {x ∈
Dom(t∗t) : t∗t(x) = t∗(y)}. Thent†(y) = PA

Gy
(0).

Proof. Note thatPA
Gy

(0) is nonempty (in fact singelton) for everyy ∈ Dom(t∗). In fact the
Lemma 3.4 shows thatGy is an affine subspace, but unlike Hilbert spaces in HilbertC∗-
modules,C∗-valued metric projection on affine subspaces may be empty. But for everyz ∈ Gy

we have

Gy = {x ∈ Dom(t∗t) : t∗t(x) = t∗t(z)}
= {x ∈ Dom(t∗t) : x− z ∈ Ker(t∗t)} = z + Ker(t∗t) = z + Ker(t).

So
Gy = z + Ker(t).
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On the other hand by Lemma 3.3 we have

PA
Gy

(0) = PA
z+Ker(t)(0) = z + PA

Ker(t)(−z).

Now sinceKer(t) is complemented submodule soPA
Ker(t) is a single valued map. We show that

s(y) = PA
Gy

(0) satisfies the conditions of definition 2.1. First we prove some auxiliary relations:

(i) Gy ∩Ker(t)⊥ = {s(y)} :
sinceGy = z + Ker(t)(∀z ∈ Gy), using Proposition 3.1 we have

z = s(y) ⇔ z = PA
Gy

(0)

⇔ Re〈x− z, z〉 ≥ 0 (∀x ∈ Gy)

⇔ Re〈x− z, z〉 ≥ 0 (∀x ∈ z + Ker(t))

⇔ z ∈ Ker(t)⊥.

(ii) PA
Ran(t)

= ts:

Fix y ∈ Dom(s). Thens(y) ∈ Gy = {x ∈ Dom(t∗t) : t(x) = PA
Ran(t)

(y)}. Which

implies thatts(y) = PA
Ran(t)

(y) and continuity implies thatts = PA
Ran(t)

.

(iii) PA
Ran(t∗)

= st:
By i) and ii) we have

tst ⊆ PA
Ran(t)

t = t = t(PA
Ker(t) + PA

Ran(t∗)
) = tPA

Ran(t∗)
.

HenceRan(st − PA
Ran(t∗)

) ⊆ Ker(t). On the other handRan(s) ⊆ Ker(t)⊥ =

Ran(t∗), so
Ran(st− PA

Ran(t∗)
) ⊆ Ran(t∗) = Ker(t)⊥.

altogether,

Ran(st− PA
Ran(t∗)

) ⊆ Ker(t) ∩Ker(t)⊥ = {0}.

Which implies thatst = PA
Ran(t∗)

.

(iv) Ker(t∗) = Ker(s) :
If y ∈ Ker(t∗) then sinces(y) ∈ Gy sos(y) ∈ Dom(t∗t) ⊆ Dom(t). Also ts(y) =
PA

Ran(t)
(y) = 0, which meanss(y) ∈ Ker(t). On the other hand by (i)s(y) ∈ Ker(t)⊥.

Sos(y) = 0
If y ∈ Ker(s) thents(y) = 0, Soy ∈ Ker(ts) ⊆ Ker(PA

Ran(t)
) = Ker(t∗).

Using above results,
(ts)∗ = (ts)∗ = (ts)∗ = (PA

Ran(t)
)∗ = ts.

similarly (st)∗ = st. Also by (ii) the operatorts acts onRan(t) as the identity operator so
tst = t and similarlysts = s by (iii). It remains to prove thats ∈ R(F, E). Consider the
isometryU ∈ B(E ⊕ F, F ⊕ E) by U(x, y) = (y, x), then by Proposition9.3 of [9] we have
F ⊕ E = U(G(t))⊕G(−t∗) and so

F ⊕ E = {(t(x), x) : x ∈ Dom(t) ∩Ker(t)⊥} ⊕ {(0, x) : x ∈ Ker(t)}

⊕ {(y,−t∗(y)) : y ∈ Dom(t∗) ∩Ran(t)} ⊕ {(y, 0) : y ∈ Ker(t∗)}

For anyx ∈ Dom(t) ∩Ker(t)⊥, let y = t(x) then by(i) we havex = s(y). So

{(t(x), x) : x ∈ Dom(t) ∩Ker(t)⊥} = {(y, s(y)) : y ∈ Ran(t)}.
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Using(iv) we have

{(y, 0) : y ∈ Ker(t∗)} = {(y, s(y)) : y ∈ Ker(t∗)}.
By the same argument oñs : Dom(t) ⊆ E → F, s̃ = PA

Cx
(0) where

Cx = {x ∈ Dom(tt∗) : tt∗(x) = t(y)} we have

{(y,−t∗(y)) : y ∈ Dom(t∗) ∩Ran(t)} ⊕ {(0, x) : x ∈ Ker(t)}
= {(−s̃(y), y) : y ∈ Dom(s̃)}

SoF ⊕E = G(s)⊕V G(s̃), whereV ∈ B(E⊕F, F ⊕E) is an isometry defined byV (x, y) =
(y,−x). Now Corollary 3.2 of [9] implies thats ∈ R(F, E). In particulars∗ = s̃.

SinceB(E, F ) is a subset ofR(E, F ), we have the following corollary.

Corollary 3.6. SupposeT ∈ B(E, F ) has closed range. For anyy ∈ F setGy = {x ∈ E :
T ∗T (x) = T ∗(y)}. ThenT †(y) = PA

Gy
(0).

There is a large literature dealing with the Moore-Penrose inverse of an element of aC∗-
algebra (for example see [1] and references in it). Here we have the following version of above
theorem forC∗-algebras:

Corollary 3.7. LetA be unitalC∗-algebra anda be an element ofA whichaA is closed. Then
a† is a unique element ofA which satisfies:

|a†|2 = inf
b∈G

|b|2,

whereG = {b ∈ A : a∗ab = a∗}.

Proof. Let E be A as a HilbertA-module. We haveB(E) ' A given byT ↔ T (1); cf.[9,
Theorem 6]. LetT (x) = ax. SinceaA is closedRan(T ) is closed. Now Corollary 3.6
completes the proof.

Next theorem is some characterizations of Moore- Penrose inverse.

Theorem 3.8.Lett ∈ R(E, F ), Ran(t) ⊆ Dom(t∗) andRan(t) andRan(t∗) are orthogonally
complemented inF andE respectively. Let̃t ∈ R(F, E), Ran(t) ⊆ Dom(t̃) andRan(t̃) ⊆
Dom(t). Then the following conditions are equivalent:

(i) t̃ = t†,
(ii) Dom(t̃) = Dom(t∗), tt̃ = PA

Ran(t)
and t̃t = PA

Ran(t∗)
.

(iii) Dom(t̃) = Dom(t∗), t̃t|Ran(t∗) = Id, and t̃|Ran(t)⊥ = 0.

Proof. (i) ⇒ (ii) is a consequence of Theorem 3.5 (note that by(iv) in proof of Theorem 3.5
Ran(t̃) = Ran(t∗)) .
(ii) ⇒ (iii) is straightforward.
(iii) ⇒ (i) Takey ∈ Dom(t̃). Sety1 = PA

Ran(t)
(y) andy2 = PA

Ran(t)
⊥(y). Then there exists

x1 ∈ Ker(t)⊥ such thaty1 = t(x1). Hence

t̃(y) = t̃(y1) + t̃(y2) = t̃(y1) = t̃t(x1) = x1.(3.-10)

So t̃(y) ∈ Ker(t)⊥. Also it follows thattt̃(y) = t(x1) = y1 = PA
Ran(t)

(y) and Lemma 3.4

yieldst∗tt̃(y) = t∗(y). Now (i) in proof of the Theorem 3.5 implies thatt̃(y) = t†(y).

Corollary 3.9. LetT ∈ B(E, F ) andT̃ ∈ B(F, E) both have closed range.Then the following
are equivalent:
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(i) T̃ = T †,
(ii) T T̃ = PA

Ran(T ) andT̃ T = PA
Ran(T ∗).

(iii) T̃ T |Ran(T ∗) = Id, andT̃ |Ran(T )⊥ = 0.

Theorem 3.10.SupposeT ∈ B(E, F ) has closed range. ThenT † = (T |Ker(T )⊥)−1PA
Ran(T ).

Proof. We first show that the expression on the right side is well-defined, i.e., the restriction
of T to Ker(T )⊥ has a bounded inverse onRan(T ). Let T0 := T |Ker(T )⊥. ThenT0 is a
bounded linear operator from the HilbertA-moduleKer(T )⊥ to the HilbertA-moduleRan(T ).
Moreover,T0 is bijective. To see thatT0 is injective, supposeT0(x1) = T0(x2) for somexi ∈
Ker(T )⊥. Thenx1 − x2 ∈ Ker(T )⊥ andT (x1 − x2) = T0(x1 − x2) = 0, so xl − x2 ∈
Ker(T )⊥ ∩ Ker(T ) = {0}, or x1 = x2. To see thatT0 is surjective, lety ∈ Ran(T ). Then
there existsx ∈ E such thaty = T (x). So

y = T (PA
Ker(T )(x) + PA

Ker(T )⊥(x)) = TPA
Ker(T )⊥(x) = T0P

A
Ker(T )⊥(x) ∈ Ran(T0).

ThusT0 is surjective. By the bounded inverse theorem, we see thatT0 has a bounded inverse.
Also T ∈ B(E, F ) implies that

T−1
0 ∈ B(Ran(T ), Ker(T⊥)).

LetS := T−1
0 PA

Ran(T ). We will show thatS = T †. To this end, first note thatS ∈ B(F, Ker(T )⊥) ⊆
B(F, E). Fix any y ∈ F . Since the range ofS is contained inKer(T )⊥, we haveS(y) ∈
Ker(T )⊥. Also, TS(y) = T0S(y) = T0T

−1
0 PA

Ran(T )(y) = PA
Ran(T )(y). Now (i) in the proof of

Theorem 3.5 implies thatS(y) = T †(y). Sincey ∈ F was arbitrary,S = T †.

We close this paper with a corollary about weighted Moore-Penrose inverse of an operator.
For primary definition and results about weighted Moore-Penrose inverse of an operator on a
Hilbert C∗-module see [16].

An elementM of B(F ) is said to be positive definite, ifM is positive and invertible inB(F ).
For any positive definiteM ∈ B(F ) we use the notationFM to denote the HilbertA-module
with the inner-product given by

〈x, y〉M = 〈x, My〉, x, y ∈ E,

and callFM the weighted space (with respect toM ).
For any positive definite elementN of B(E), T ∈ B(E, F ), if we regardT as an element

of B(EN , HM), thenT ] = N−1T ∗M. whereT ] ∈ B(FM , EN) is the adjoint operator ofT ∈
B(EN , FM).

Definition 3.11. Let T ∈ B(E, F ) be arbitrary, and letM ∈ B(F ) andN ∈ B(E) be two pos-
itive definite operators. The weighted Moore-Penrose inverseT †MN (if it exists) is the element
X ∈ B(F, E), which satisï̌nĄes

TXT = T, XTX = X, (MTX)∗ = MTX, (NXT )∗ = NXT.

If M = IF andN = IE, thenT †MN = T †.
We know by (Theorem 1.3 [16]) thatT †MN exists if and only ifA has closed range.
The following corollary is an immediate consequence of Theorem 3.5. In fact if we put

Gy = {x ∈ F : T ]T (x) = T ](Y )}+ {x ∈ F : N−1T ∗MT (x) = N−1T ∗M(y)}.
Then we ahve

Gy{x ∈ F : T ∗MT (x) = T ∗M(y)}.
Corollary 3.12. For any T ∈ B(E, F ) we haveT †MN = PA

Gy
(0) which Gy = {x ∈ F :

T ∗MT (x) = T ∗M(y)}.
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