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1. INTRODUCTION

A Hilbert C*-module is a generalization of a Hilbert space for which the inner product takes
its values in aC*-algebra instead of the complex numbers. Exactly a pre-Hilgénnodule
over a (not necessarily unital) C*-algeb#fas a right A-module E equipped with am-valued
mapping(.,.) : E x E — A with following properties:

() (z,y+A2) =(z,9) + Mz,2)  (z,9,2€ E,A€C),
(i) (z,ya) = (z,y)a  (z,y € E,a € A),
(i) (y,z) =(z,y)*  (z,y € E),
(iv) (z,z) >0, (xr € E) andif(x,z) = 0thenz = 0.
The may(., .) is called theA-valued inner product oi'. A pre-HilbertA-module(E', (.,.))is

1
called HilbertA-module if it is complete with respect to the nofm ||=|| (.,.) ||3. We always
suppose that the linear structures/oénd £/ are compatible.

Although HilbertC*-modules behave like Hilbert spaces in some ways, some fundamental
and familiar Hilbert space properties do not hold. For example, given a closed submodule
of a Hilbert C*-moduleF, defineV+ = {z € F : (z,y) = 0,Vy € V}. ThenV! is a closed
submodule, but usually # V & V.

If I is a closed right ideal of'*-algebraA, then! is a Hilbert A-module if we define

(a,b) =a"b (a,beI).

In particular anyC*-algebra is a Hilbert module over itself. On the other hand any Hilbert
module over the complex fiel@ is a Hilbert space. Thus Hilbe¢t*-modules generalize both
C*-algebras and Hilbert spaces.

As a convention, throughout the present paper we assumel tisaan arbitraryC*-algebra
andE, F' are HilbertA-modules. Since we deal with bounded and unbounded operators at the
same time, we denote bounded operators by capital letters and unbounded operators by lower
case letters. We use the denotatidhsn(.), Ker(.) and Ran(.) for domain, kernel and range
of operators, respectively.

We denote the set of all boundettliinear mapsl” : £ — F for which there is a map
T* . F — F such that the equality7'z,y) = (z,T*y) holds for anyx € E,y € F by
B(E, F). The operatof™* is called the adjoint operator @f. It follows that7 (and alsol™)
is a bounded, linear, A-module map in the sens&@fa) = (T'z)a foranyz € E,a € A. We
abbreviateB(E, E), to B(E).

The concept of Moore-Penrose inverse, first defined by E.H. Moore in the framework of
finite matrix, in decad@910 — 1920 [10] (see alsd[11]) ;called by him the “general reciprocal”.
Then this concept more or less was forgotten and then was rediscovered by R. Penrose in an
algebraic form in 1955 [13]. The equivalence of the two definitions was pointed out by Rado
[14]. Definition of Moore-Penrose inverse for linear operators between Hilbert spaces and
Hilbert C*-modules is similar:

Definition 1.1. Let T € B(E, F). The Moore-Penrose invergg of T (if exists) is an element
S of B(F, E) which satisfies:

TST =T,STS = S, (TS)* = TS, (ST)* = ST.

Xu and Sheng [([17] Theorem 2.2) have shown that bounded adjointabfecar operator
T between two HilbertA-modules admits a bounded Moore-Penrose inverse if and only if the
operator!’ has closed range. In which cagé, exists uniquely withl'"7'7* = T* andT" = 0
on Rant(T)*.
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Also we have an explicit representation of Moore-Penrose inverse(i, F). If T €

B(E, F) has Moore-Penrose invergé € B(F, E) then we have
Th = lim (ol +T°T)"'T" = lim T"(al+TT")"".
a—0 a—0

If we define| z |= (z, )2, then| . | is calledA-valued "norm". This is not actually a norm,
since in general the triangle inequalijty + y |<| = | + | y | is not satisfied (a simple example
presented in [5]).

Kolarec[7] proved that if,y € £ and|z|, |y| € Z(A)-the center ofd- then

lz +y| < |z| + |yl

Also Jiang [6] showed thati-valued triangle inequality is satisfied if and only(i/, E) is
commutative, where

(E,E) = span{(z,y) : x,y € E}.
In this paper usingd-valued norm, we definel-valued metric projection, after some useful
results we characterize Moore-penrose inverse of a densely defined operdtoatlued metric
projection. Note that in our approach we do not use the triangle inequality.

2. PRELIMINARIES

In this section we recall some definitions and basic facts about regular operators on Hilbert
A-modules. More details and properties can be found_in ([9] chapters 9 and 10) .

We will use the notation: Dom(t) C E — F toindicate that is anA-linear operator whose
Dom(t) is a dense submodule éf and whose range is ifi. Givent, s : Dom(t), Dom(s) C
E — F,we writes C ¢ if Dom(s) C Dom(t) ands(x) = t(x) for all z € Dom(s). A densely
defined operatot : Dom(t) C E — F is called closed if its grapty¥(¢t) = {(x,t(x)) : x €
Dom(t)} is a closed submodule of the HilbettmoduleE & F'. If t is closable, the operator
s : Dom(s) C E — F with the propertyG(s) = G(t) is called the closure of denoted by
s = t. The operatot is the smallest closed operator that contains

A densely defined operater: Dom(t) C E — I is called adjointable if it possesses a
densely defined magy : Dom(t*) C F — E with the domain
Dom(t*) = {y € F : there exists € E such that(t(x),y)r = (z, z) for anyx € Dom(t)}.
which satisfies the property(z),y)r = (x,t*(y)) g, for anyz € Dom(t),y € Dom(t*). This
property implies that* is a closedA-linear map.

The composition of two densely defined operatorsis the unbounded operatog with
Dom(ts) = {x € Dom(s) : s(x) € Dom(t)} given by(ts)(x) = t(s(x)) forall z € Dom(ts).

The operatots is not necessarily densely defined. Suppose two densely defined opeérators
are adjointable, thesi't* C (ts)*. If T'is a bounded adjointable operator, théfi™ = (7's)*.

A densely defined closed-linear mapt : Dom(t) C E — F' is called regular if it is
adjointable and the operator-t*t has a dense range. We denote the set of all regular operators
from E to F' by R(E, F'). A criterion of regularity via the graph of densely defined operators
has been given in [3]. In fact a densely defined operatoth a densely defined adjoint operator
is regular if and only if its graph is orthogonally complementedim F'. If ¢ is regular thert*
is regular and = t**, moreovert*t is regular and selfadjoint (cf[_[9], Corollaries 9.4, 9.6 and
Proposition 9.9).

A regular operatot has closed range if and only if its adjoint operatohas closed range,
and then forlt| := |(¢*t)|2 the orthogonal sum decompositioBs = Ker(t) & Ran(t*) =
Ker(|t]) ® Ran(|t]), F = Ker(t*) @ Ran(t) = Ker(|t*|) ® Ran(|t*|) exist, (cf. Proposition
1.2 of [3] and Result 7.19 of [8]).

The concept of Moore-Penrose inverses of unbounded regular operators, is defined in [4]
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Definition 2.1. Lett € R(F, F') be a regular operator between two HilbérmodulesE, F’
over some fixed'*-algebraA. A regular operatos € R(F, F) is called the Moore-Penrose
inverse oft if

tst =t, sts=s, (ts)"=1s, (st)" = st.

If a regular operator t has a generalized invess¢hen the above definition implies that

Ran(t) € Dom(s) and Ran(s) C Dom(t). A fundamental existence theorem for Moore-
Penrose inverse is given inl [4] as follows:

Theorem 2.2.1f t € R(E, F'), then the following conditions are equivalent:
(i) t andt* have unique Moore-Penrose inverses which are adjoint to each ottzerd¢ .

(i) £ = Ker(t)® Ran(t*) and F' = Ker(t*) @ Ran(t).
In this situation,t*t™* and ¢t are the projections ontdan(t*) = Ran(t*t) and Ran(t), re-
spectively.

Groetsch’s representation for the Moore-Penrose inverse of unbounded regular operator
between HilberC*-modules is given in [15]:

Theorem 2.3. Suppose € R(E, F) is a regular operator and andt* possess the Moore-
Penrose inversed andt™*. Then
(i) tT = lim,_o+ t*(wl + #*) 7! = lim,,_o+ (w1 + t*t)~1t* on Dom(t").
(i) t™ = lim,_o+ t(wl + t*t) "' = limy_o+ (w1 + t*)~1t on Dom(t™).
The Gram operator afis defined to be the operator and studied in[12]:

Theorem 2.4. Supposeé € R(E, F'), has closed range anBlan(t) C Dom(t*). Then
(i) th = ()Tt = t*(1t")T,
(i) (tre)t = tiei=,
Note, that bounded!-linear operators may admit generalized inverses in the set of regular

operators even if they do not admit any bounded generalized inverse operator. For examples,
consider contractive operators on Hilbert spaces with dense, but non-closed range.

3. MAIN PART

In [2] using A-valued norm we defined-valued metric projection of closed convex subset
KCEaSP;(4:E—>K,

Pj?(x) ={weK:|z—y |2: inf |x—y |2}
yeK

We proved that’#(z) has at most one element. Also we presented a general characterization
of A-valued metric projection as@*-valued variational inequality.

Proposition 3.1. Let (E, (.,.)) be a HilbertC*-module andK” C E is a closed, convex and
x € E. The following statements are equivalent:

() pe KandRe{z—p,p—y) >0 (y € K),
(i) p= Pi(z).
Moreover ifK is closed submodule then= P (z) if and only ifx — p € K*.

Above proposition shows that for a submodulef £, P{(x) exists for everyr € E if and
only if V' is complemented submodule. In fact behavioltfvalued metric projection oper-
ator on a closed complemented submodule is similar to metric projection operator on a closed
subspace of a Hilbert space. We collect some basic facts @bewhlued metric projections
onto closed complemented submodules:
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Corollary 3.2. Let V' be a closed complemented submodulé’adnd letx € E. Then the
following hold:

(i) P#(z) exists and is characterized B (z) € V andz — P € V+.
(i) [P () = (P (), ).
(i) P} =1Id— P
(iv) P is selfadjoint and thus is iB(E), | P#|| = 1if V # 0, and||P#|| = 0if V = 0.
V) [z =[PP ()] + [ PP ().
In this paper we describe Moore-Penrose inverse of a regular operafdr-tglued metric
projection.
Lemma 3.3. Let K be a nonempty closed convex subseb'pénd letx andy be in £. Then
Pl g =y+ Pi(z —y).
Proof.
Re(r —y — Pi(z —y),y + Pi(z —y) — (y+2)) = Re(z —y — Pg(z —y), Pi(z —y) — 2))
> 0.
and Propositiofi 3]1 completes the propf.
The next lemma is essential for our main theorem.

Lemma 3.4. Lett € R(E,F), y € Dom(t*) and Ran(t) C Dom(t*) then for everyr €
Dom(t*t),

Proof.
Ha) = PA_—(y) & (r.t(x) — y) = 0 (¥ € Ran?)
& (t(2),te —y) =0 (Vz € Dom(t))
& (z,t"(t(z) —y)) = 0 (Vz € Dom(t) = E)
& tt(x) =t (y)
|

The next theorem, which is the main theorem of this paper, shows that if2( £, F) is the
Moore-Penrose inverse ofc R(E, F') andt* has Moore-Penrose inverse, which is adjoint of
t" then for everyy € F, t'(y) can be characterized u%‘y(()) for a special affine subspacg,
of E (cf. Theorenj 22).

Theorem 3.5. Suppose that € R(E, F'), Ran(t) C Dom(t*) and Ran(t) and Ran(t*) are
both orthogonally complemented inand E respectively. Fixy € Dom(t*). SetG, = {z €
Dom(t*t) : t*t(z) = t*(y)}. Thent'(y) = Pé‘y(O).

Proof. Note thatPé‘y(O) is nonempty (in fact singelton) for evegy € Dom(t*). In fact the
Lemma[3.4 shows that/, is an affine subspace, but unlike Hilbert spaces in Hillgert
modulesC*-valued metric projection on affine subspaces may be empty. But for every,
we have

Gy ={z € Dom(t't) : t"t(z) = t"t(2)}
={z € Dom(t't) : x — z € Ker(t"t)} = z + Ker(t't) = z + Ker(t).

So
Gy =z + Ker(t).
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On the other hand by Lemma B.3 we have
Péy«)) = Pﬁi—K@r(t)(O) =zt Pl?e’r(t)<_z>'

Now sinceKer(t) is complemented submodule 8, ,, is a single valued map. We show that
s(y) = Pé‘y (0) satisfies the conditions of definiti.l. First we prove some auxiliary relations:

() Gy N Ker(t): ={s(y)} :
sinceG, = z + Ker(t)(Vz € G,), using Propositioh 3|1 we have

z=5(y) & z= Péy(())
< Re(x — z,2)
& Re(r — z,2)
&z € Ker(t)*.

0(Vz € Gy)

>
>0 (Vr € 2+ Ker(t))

(ii) PJQT@) = ts:
Fix y € Dom(s). Thens(y) € G, = {z € Dom(t*t) : t(x) = PR‘f‘an

implies thatts(y) = PA—_(y) and continuity implies thafts = P4,

(y)}. Which

(t)

Ran(t) Ran(t)
A -
(ii) PW —“St-
By i) and ii) we have
A A A 4
tst C Prot = 0= (Preriy + Prany) = WPhaney

(t*)) C Ker(t). On the other handran(s) C Ker(t): =

Hence Ran(st — P4

Ran(t*), so
Ran(st — P}‘;an(t*)) C Ran(t*) = Ker(t)*.
altogether,
Ran(st — P]‘gm(t*)) C Ker(t)n Ker(t): = {0}.
Which implies thatst = Pé“an(t*).

(iv) Ker(t*) = Ker(s) :
If y € Ker(t*) then sinces(y) € G, sos(y) € Dom(t*t) C Dom(t). Alsots(y) =
P4__(y) = 0, which means(y) € Ker(t). Onthe other hand by (§(y) € Ker(t)*.

Ran(t)
Sos(y) =0
If y € Ker(s) thents(y) = 0, Soy € Ker(ts) C Ker(PA__) = Ker(t).

Ran(t)
Using above results,

(ts)" = (ts)" = (Ts)" = (Phoy)” = 15
similarly (st)* = st. Also by (i7) the operatotts acts onRan(t) as the identity operator so
tst = t and similarlysts = s by (éiz). It remains to prove that € R(F, E). Consider the
isometryU € B(E® F,F & E) by U(z,y) = (y,z), then by Propositiof.3 of [9] we have
Fe E=U(G()) ®G(—t*) and so
F®E = {(t(x),z): 2 € Dom(t)n Ker(t)*} @ {(0,2) : z € Ker(t)}
@ {(y, =t (y)) : y € Dom(t") N Ran(t)} @ {(y,0) : y € Ker(t")}
For anyx € Dom(t) N Ker(t)*, lety = t(z) then by(i) we haver = s(y). So

{(t(z),2) : & € Dom(t) N Ker(t)*} = {(y,s(y)) : y € Ran(t)}.
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Using (iv) we have

{(y,0) -y € Ker(t")} = {(y,s(y)) - y € Ker(t")}.
By the same argument an: Dom(t) C E — F, § = PZ (0) where
C, = {x € Dom(tt*) : tt*(x) = t(y)} we have
{(y, =t"(v)) : y € Dom(t*) N Ran()} © {(0,z) : & € Ker(t)}
={(=5(y),y) : y € Dom(3)}
SoF @ E =G(s)®VGE(5), whereV € B(E® F, F & E) is an isometry defined by (z,y) =
(y, —x). Now Corollary 3.2 of[[9] implies that € R(F, E). In particulars* = 3. 1
SinceB(FE, F) is a subset oR(E, F'), we have the following corollary.

Corollary 3.6. Supposé’ € B(E, F) has closed range. For any € F' setG, = {z € E :
T*T(x) = T*(y)}. ThenT(y) = Pgu(()).

There is a large literature dealing with the Moore-Penrose inverse of an elemeidt*ef a
algebra (for example seel[1] and references in it). Here we have the following version of above
theorem forC*-algebras:

Corollary 3.7. Let A be unitalC*-algebra andu be an element oft whicha A is closed. Then
a' is a unique element of which satisfies:

|a'|* = inf [p]?,
beG
whereG = {b € A : a*ab = a*}.
Proof. Let £ be A as a HilbertA-module. We have3(E) ~ A given byT < T(1); cf.[9,
Theorem 6]. Letl'(z) = ax. SinceaA is closedRan(T) is closed. Now Corollary 3|6

completes the proof.
|

Next theorem is some characterizations of Moore- Penrose inverse.

Theorem 3.8.Lett € R(E, F'), Ran(t) C Dom(t*) and Ran(t) and Ran(t*) are orthogonally
complemented iF” and E respectively. Let € R(F, E), Ran(t) C Dom(t) and Ran(t) C
Dom(t). Then the following conditions are equivalent:
() i =1, B B
OOQM@ZDWWW?:%%@mW“¥%EW
(III) Dom( ) = Dom(t*)7 tt‘m = Id, andt‘Ran(t)L =0.

Proof. (i) = (i) is a consequence of Theorém|3.5 (note thatiby in proof of Theorem 3]5
Ran(t) = Ran(t)) .

(17) = (i7i) is straightforward.

(iii) = (i) Takey € Dom(t). Sety; = PA__(y) andy, = PAaTL (y). Then there exists

Ran(t) Ran(t)
r; € Ker(t)* such that, = t(z;). Hence
(3.-10) t(y) = ty) +y2) = tyr) = tt(21) = 1.
Sot(y) € Ker(t)*-. Also it follows thattt(y) = t(z1) = y1 = PéTm(y) and Lemm4
yieldst*tt(y) = t*(y). Now (i) in proof of the Theore5 implies th&ty) = tf(y). n

Corollary 3.9. LetT € B(E, F) andT € B(F, E) both have closed range.Then the following
are equivalent:
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(i) T =11, ~
(i) TT|ran(r+) = Id, andT | ggn(m: = 0.
Theorem 3.10.Supposd’ € B(FE, F) has closed range. Theli = (T|Ker(T)L)—1P§an(T).

Proof. We first show that the expression on the right side is well-defined, i.e., the restriction
of T to Ker(T)* has a bounded inverse d®un(T). LetT, := T|k..(r):. ThenTy is a
bounded linear operator from the HilbettmoduleKer(T)* to the HilbertA-moduleRan(T).
Moreover,T; is bijective. To see thafj is injective, supposé&g(z1) = Ty(z2) for somex; €
Ker(T)t. Thenz; — 2o € Ker(T)*t andT(zy — zo) = To(z1 — x9) = 0, SOx; — 29 €
Ker(T): n Ker(T) = {0}, orz; = z,. To see thafl is surjective, lety € Ran(T). Then
there exists € F such thaty = T'(z). So

Y= T<PII?€7’(T) (.T) + Péer(T)i(x)) = TPII?GT(T)l (.Z') = TOPI?@T(T)i(x) € RGTL(T())
ThusTj is surjective. By the bounded inverse theorem, we se€lihhais a bounded inverse.
AlsoT € B(E, F) implies that

;' € B(Ran(T), Ker(T)).

LetS := Ty ' P,,r)- We will show thats = T'1. To this end, first note that € B(F, Ker(T)*) C
B(F,E). Fixanyy € F. Since the range of is contained inKer(T)*, we haveS(y) €
Ker(T)*. Als.o,T_S(y) =ToS(y) = TOT(;ng‘an(T) (y) = P;{f‘qn(T)(y). Now (i) in the proof of
Theorenj 3.5 implies thaf(y) = T"(y). Sincey € F was arbitraryS = 7. 1

We close this paper with a corollary about weighted Moore-Penrose inverse of an operator.
For primary definition and results about weighted Moore-Penrose inverse of an operator on a
Hilbert C*-module see [16].

An elementM of B(F) is said to be positive definite, if/ is positive and invertible i3 (F').
For any positive definitd/ € B(F) we use the notatioft), to denote the Hilberti-module
with the inner-product given by

<xvy>M:<x7My>7 l',yEE,
and callF); the weighted space (with respectin).

For any positive definite elemenf of B(E), T' € B(E, F), if we regardI’ as an element
of B(Ey, Hy), thenT® = N='T*M. whereT* € B(F);, Ey) is the adjoint operator df' €
B(En, F).

Definition 3.11. LetT € B(FE, F') be arbitrary, and le¥/ € B(F) andN € B(FE) be two pos-
itive definite operators. The weighted Moore-Penrose in\/ié’ﬁﬁ (if it exists) is the element
X € B(F, E), which satisiAes

TXT =T, XTX =X, (MTX)" = MTX, (NXT)* = NXT.

If M = I andN = I, thenT},, = T".

We know by (Theorem 1.3 [16]) thﬁﬂv, v exists if and only ifA has closed range.

The following corollary is an immediate consequence of Thegrein 3.5. In fact if we put

Gy={z e F:T"T(x) =T"Y)} +{x € F: N'T*MT(x) = N"'T*M(y)}.
Then we ahve
Gz e F:T"MT(z) =T"M(y)}.
Corollary 3.12. For any T € B(E,F) we havel],, = Pé‘y(o) whichG, = {z € F :
T*MT(z) =T*M(y)}.
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