

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 4, Issue 1, Article 9, pp. 1-7, 2007

1-TYPE PSEUDO-CHEBYSHEV SUBSPACES IN GENERALIZED 2-NORMED SPACES

SH. REZAPOUR

Received 1 January, 2006; accepted 13 September, 2006; published 22 March, 2007.

DEPARTMENT OF MATHEMATICS, AZARBAIJAN UNIVERSITY OF TARBIAT MOALLEM, AZARSHAHR, TABRIZ, IRAN. sh.rezapour@azaruniv.edu URL: http://www.azaruniv.edu/~rezapour

ABSTRACT. We construct a generalized 2-normed space from every normed space. We introduce 1-type pseudo-Chebyshev subspaces in generalized 2-normed spaces and give some results in this field.

Key words and phrases: Generalized 2-normed space, B-proximinal, 1-type pseudo-Chebyshev subspace, 2-functional.

2000 Mathematics Subject Classification. Primary: 46A15, 41A65.

ISSN (electronic): 1449-5910

^{© 2007} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

The concept of linear 2-normed spaces has been investigated by Gähler in 1965 ([3]) and has been developed extensively in different subjects by others. Lewandowska published a series of papers on 2-normed sets and generalized 2-normed spaces in 1999-2003 ([5]-[9]). There are some works on characterization of 2-normed spaces, extension of 2-functionals and approximation in 2-normed spaces ([1], [2] and [4]). Also, there are some works in approximation theory (for example, [10]-[12]).

Let X be a linear space of dimension greater than 1 over K, where K is the real or complex numbers field. Suppose $\|.,.\|$ be a non-negative real-valued function on $X \times X$ satisfying the following conditions:

- (i) ||x, y|| = 0 if and only if x and y are linearly dependent vectors.
- (ii) ||x, y|| = ||y, x|| for all $x, y \in X$.
- (iii) $\|\lambda x, y\| = |\lambda| \|x, y\|$ for all $\lambda \in K$ and all $x, y \in X$.

(iv) $||x + y, z|| \le ||x, z|| + ||y, z||$ for all $x, y, z \in X$.

Then $\|.,.\|$ is called a 2-norm on X and $(X, \|.,.\|)$ is called a linear 2-normed space.

Every 2-normed space is a locally convex topological vector space. In fact for a fixed $b \in X$, $p_b(x) = ||x, b||, x \in X$, is a seminorm and the family $P = \{p_b : b \in X\}$ of seminorms generates a locally convex topology on X. But, there are no remarkable relations between normed spaces and 2-normed spaces.

We couldn't construct any 2-norm on X by a normed space $(X, \|.\|)$, and this could be a motive for definition of generalized 2-normed spaces.

Definition 1.1. ([5]-[7]) Let X and Y be linear spaces, D be a non-empty subset of $X \times Y$ such that for every $x \in X$, $y \in Y$ the sets

$$D_x = \{ y \in Y : (x, y) \in D \}, D^y = \{ x \in X : (x, y) \in D \}$$

are linear subspaces of the spaces Y and X, respectively. A function $\|.,.\|: D \longrightarrow [0,\infty)$ is called a generalized 2-norm on D if it satisfies the following conditions:

 (N_1) $||x, \alpha y|| = |\alpha| ||x, y|| = ||\alpha x, y||$, for all $(x, y) \in D$ and every scalar α .

- $(N_2) ||x, y + z|| \le ||x, y|| + ||x, z||$, for all $(x, y), (x, z) \in D$.
- $(N_3) ||x+y,z|| \le ||x,z|| + ||y,z||$, for all $(x,z), (y,z) \in D$.

Then, $(D, \|., .\|)$ is called a 2-normed set. In particular, if $D = X \times Y$, $(X \times Y, \|., .\|)$ is called a generalized 2-normed space. Moreover, if X = Y, then the generalized 2-normed space is denoted by $(X, \|., .\|)$.

Definition 1.2. ([5]-[7]) Let X be a linear space, χ be a non-empty subset of $X \times X$ such that $\chi = \chi^{-1}$ and the set $\chi^y = \{x \in X : (x, y) \in \chi\}$ is a linear subspace of X, for all $y \in X$. A function $\|.,.\| : \chi \longrightarrow [0,\infty)$ is called a generalized symmetric 2-norm on χ if it satisfies the following conditions:

- $(S_1) ||x, y|| = ||y, x||$, for all $(x, y) \in \chi$.
- $(S_2) ||x, \alpha y|| = |\alpha| ||x, y||$, for all $(x, y) \in \chi$ and every scalar α .
- $(S_3) ||x+y,z|| \le ||x,z|| + ||y,z||$, for all $(x,y), (x,z) \in \chi$.

Then, $(\chi, \|., .\|)$ is called a generalized symmetric 2-normed set. In particular, if $\chi = X \times X$, the function $\|., .\|$ is called a generalized symmetric 2-norm on χ and $(X, \|., .\|)$ is called a generalized symmetric 2-normed space.

Definition 1.3. ([5]) Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space.

- (a) The family β of all sets defined by $\bigcap_{i=1}^{n} \{x \in X : ||x, y_i|| < \varepsilon\}$, where $n \in \mathbb{N}$, $y_1, ..., y_n \in Y$ and $\varepsilon > 0$, forms a complete system of neighborhoods of zero for a locally convex topology in Y.
- (b) The family β of all sets defined by $\bigcap_{i=1}^{n} \{y \in Y : ||x_i, y|| < \varepsilon\}$, where $n \in \mathbb{N}$, $x_1, ..., x_n \in X$ and $\varepsilon > 0$, forms a complete system of neighborhoods of zero for a locally convex topology in X.

We will denote the above topologies by the symbols $\tau(X, Y)$ and $\tau(Y, X)$, respectively. In the case when X = Y, we will denote these topologies by $\tau_1(X) = \tau(X, Y)$ and $\tau_2(X) = \tau(Y, X)$.

Let us consider the linear spaces X and Y and let $D \subseteq X \times Y$ be a 2-normed set and Z be a normed space. A map $f: D \longrightarrow Z$ is called 2-linear if it satisfies the following conditions: (i) $f(x_1 + x_2, y_1 + y_2) = f(x_1, y_1) + f(x_1, y_2) + f(x_2, y_1) + f(x_2, y_2)$, for all $x_1, x_2, y_1, y_2 \in X$ such that $x_1, x_2 \in D^{y_1} \cap D^{y_2}$, (ii) $f(x_1 - y_2) = f(x_1, y_2) + f(x_2, y_1) + f(x_2, y_2)$, for all $x_1, x_2, y_1, y_2 \in X$

(ii) $f(\delta x, \lambda y) = \delta \lambda f(x, y)$, for all scalars δ, λ and all $(x, y) \in D$.

A 2-linear map f is said to be bounded if there exists a non-negative real number M such that $||f(x, y)|| \le M ||x, y||$ for all $(x, y) \in D$. Also, the norm of a 2-linear map f is defined by

 $||f|| = \inf\{M \ge 0 : ||f(x,y)|| \le M ||x,y|| \text{ for all } (x,y) \in D\}.$

We denote by $\langle b \rangle$ the subspace of linear space X generated by the element $b \in X$. For a generalized 2-normed space $(X \times Y, \|., .\|)$, a subspace W of X and $b \in Y$, we denote by W_b^{\sharp} the Banach space of all K-valued bounded 2-linear maps on $W \times \langle b \rangle$.

Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X and $b \in Y$.

(i) $w_0 \in W$ is called b-best approximation of $x \in X$ in W, if

 $||x - w_0, b|| = \inf\{||x - w, b||: w \in W\}.$

The set of all b-best approximations of x in W is denoted by $P_W^b(x)$.

(ii) W is called b-proximinal if for every $x \in X \setminus (\overline{W} \setminus W)$, there exists $w_0 \in W$ such that $||x - w_0, b|| = \inf\{||x - w, b|| : w \in W\}$, where \overline{W} denotes the closure of W in the seminormed space (X, p_b) .

Note that, W is b-proximinal if and only if $P_W^b(x) \neq \emptyset$ for all $x \in X \setminus \overline{W}$.

The following basic lemma is important in the proof of main results.

Proposition 1.1 ([3]; Theorem 3.6). *Let* $(X, \|., .\|)$ *be a 2-normed space, W be a subspace of* X and $b \in X$. If $x_0 \in X$ is such that

$$\delta = \inf\{\|x_0 - w, b\| : w \in W\} > 0,$$

then there exists a bounded 2-linear map $F : X \times \langle b \rangle \longrightarrow K$ such that $F|_{W \times \langle b \rangle} = 0$, $F(x_0, b) = 1$ and $||F|| = \frac{1}{\delta}$.

By review of [3], we find that the following similar Lemma holds for generalized 2-normed spaces.

Lemma 1.2. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X and $b \in Y$. If $x_0 \in X$ is such that

$$\delta = \inf\{\|x_0 - w, b\| : w \in W\} > 0,$$

then there exists a bounded 2-linear map $F : X \times \langle b \rangle \longrightarrow K$ such that $F|_{W \times \langle b \rangle} = 0$, $F(x_0, b) = 1$ and $||F|| = \frac{1}{\delta}$.

Lemma 1.3. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X, $b \in Y$ and $x \in X \setminus \overline{W}$, where \overline{W} denotes the closure of W in the seminormed space (X, p_b) . Then, $M \subseteq P_W^b(x)$ if and only if there exists $f \in X_b^{\sharp}$ such that $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x_0 - m, b) = ||x_0 - m, b||$ for all $m \in M$.

Proof. First suppose that there exists $f \in X_b^{\sharp}$ such that $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x_0 - m, b) = ||x_0 - m, b||$ for all $m \in M$. Then,

$$||x_0 - m, b|| = f(x_0 - m, b) = f(x_0, b) = f(x_0 - w, b)$$
$$\leq ||f|| ||x_0 - w, b|| = ||x_0 - w, b||,$$

for all $m \in M$ and all $w \in W$. Hence, $m \in P^b_W(x_0)$ for all $m \in M$. Conversely, fix $m_0 \in M$. Then,

$$\delta = \|x_0 - m_0, b\| = \inf\{\|x_0 - w, b\| : w \in W\} > 0.$$

By Lemma 1.2, there exists $g \in X_b^{\sharp}$ such that $g|_{W \times \langle b \rangle} = 0$, $g(x_0, b) = 1$ and $||g|| = \frac{1}{\delta}$. Now for $f = \delta g$ we have, $f|_{W \times \langle b \rangle} = 0$, $f(x_0 - m_0, b) = ||x_0 - m_0, b||$ and ||f|| = 1. Note that, $f(x_0 - m, b) = ||x_0 - m_0, b|| = ||x_0 - m, b||$ for all $m \in M$.

2. 1-TYPE PSEUDO-CHEBYSHEV SUBSPACES

Definition 2.1. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X and $b \in Y$.

(i) W is called b-pseudo Chebyshev if for every $x \in X \setminus \overline{W}$, where \overline{W} denotes the closure of W in the seminormed space (X, p_b) , $P_W^b(x)$ is non-empty and finite dimensional.

(ii) W is called 1-type pseudo-Chebyshev if W is b-pseudo Chebyshev for every $0 \neq b \in Y$.

Example 2.1. Let $X = \mathbb{R}^3$, $W = \{(x, y, 0) : x, y \in \mathbb{R}\}$ and

 $||(x_1, x_2, x_3), (y_1, y_2, y_3)|| =$

 $max\{|x_1y_2 - x_2y_1| + |x_1y_3 - x_3y_1|, |x_1y_2 - x_32y_1| + |x_2y_3 - x_3y_2|\}$

for all $(x_1, x_2, x_3), (y_1, y_2, y_3) \in X$. Then, $\|., .\|$ is a 2-norm on X and W is 1-type pseudo-Chebyshev subspace.

Example 2.2. Let W be a pseudo-Chebyshev subspace of a normed space $(X, \|.\|_1)$ and let $(Y, \|.\|_2)$ be an arbitrary normed space. Then, $\|x, y\| = \|x\|_1 \|y\|_2$ is a generalized 2-norm on $X \times Y$ and W is 1-type pseudo-Chebyshev subspace.

Proposition 2.1. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X and $b \in Y$. Then, W is b-pseudo Chebyshev subspace of X if and only if there do not exist $f \in X_b^{\sharp}$, $x_0 \in X \setminus \overline{W}$, where \overline{W} denotes the closure of W in the seminormed space (X, p_b) , and infinitely many linearly independent elements $w_1, w_2, ...$ in W such that $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x_0 - w_n, b) = ||x_0 - w_n, b||$, for all $n \ge 1$.

Proof. Suppose that W is not b-pseudo Chebyshev subspace. Then, there exists $x \in X \setminus \overline{W}$, such that $P_W^b(x)$ is not finite dimensional. Fix $w_0 \in P_W^b(x)$. Then, there exist infinitely many elements w_1, w_2, \ldots in $P_W^b(x)$ such that $w_0 - w_1, w_0 - w_2, \ldots$ are infinitely many linearly independent elements of W. Put $x_0 = x - w_0$ and $g_n = w_n - w_0$ for all $n \ge 1$ and note that, g_1, g_2, \ldots are infinitely many linearly independent elements of $P_W^b(x_0)$. By Lemma 1.3, there exists $f \in X_b^{\sharp}$ such that $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x_0 - g_n, b) = ||x_0 - g_n, b||$ for all $n \ge 1$. This is a contradiction.

Corollary 2.2. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space and let W be a subspace of X. Then, W is 1-type pseudo-Chebyshev subspace if and only if there do not exist $0 \neq b_0 \in Y$, $x_0 \in X \setminus \overline{W}$, $f_{b_0} \in X_{b_0}^{\sharp}$, where \overline{W} denotes the closure of W in the seminormed space (X, p_{b_0}) , and infinitely many linearly independent elements $w_1, w_2, ...$ in W such that $||f_{b_0}|| = 1$, $f_{b_0}|_{W \times \langle b_0 \rangle} = 0$ and $f_{b_0}(x_0 - w_n, b_0) = ||x_0 - w_n, b_0||$ for all $n \geq 1$.

3. (b,ε) -PSEUDO CHEBYSHEV SUBSPACES

Definition 3.1. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X, $0 \neq b \in Y$ and $\varepsilon > 0$ be given.

(i) $w_0 \in W$ is called $(\mathbf{b}, \varepsilon)$ -best approximation of $x \in X$ in W, if

$$\|x - w_0, b\| \le \inf\{\|x - w, b\| : w \in W\} + \varepsilon.$$

The set of all b-best approximations of x in W is denoted by $P_{W,\varepsilon}^b(x)$.

(ii) W is called (b,ε) -pseudo Chebyshev if $P^b_{W,\varepsilon}(x)$ is finite dimensional for every $x \in X$.

Theorem 3.1. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X, $w_0 \in W$, $0 \neq b \in Y$ and $\varepsilon > 0$ be given. Then, $w_0 \in P^b_{W,\varepsilon}(x)$ if and only if there exist $f \in X^{\sharp}_b$ such that $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x - w_0, b) \geq ||x - w_0, b|| - \varepsilon$.

Proof. First suppose that there exist $f \in X_b^{\sharp}$ such that $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x - w_0, b) \ge ||x - w_0, b|| - \varepsilon$. Then, $||x - w_0, b|| \le f(x - w_0, b) + \varepsilon = f(x - w, b) + \varepsilon \le ||x - w, b|| ||f|| + \varepsilon = ||x - w, b|| + \varepsilon$ for all $w \in W$. Hence, $w_0 \in P_{W,\varepsilon}^b(x)$. Conversely, Let $w_0 \in P_{W,\varepsilon}^b(x)$. If $x \in \overline{W}$, where \overline{W} denotes the closure of W in the seminormed space (X, p_b) , choose $w_0 \in W$ such that $||x - w_0, b|| < \varepsilon$. Then, every $f \in X_b^{\sharp}$ with $f|_{W \times \langle b \rangle} = 0$ and ||f|| = 1, satisfies $f(x - w_0, b) \ge ||x - w_0, b|| - \varepsilon$. If $x \in X \setminus \overline{W}$, $\delta = \inf\{||x_0 - w, b|| : w \in W\} > 0$. Then by Lemma 1.2, there exists $g \in X_b^{\sharp}$ such that $g|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x - w_0, b) + \varepsilon = \delta + \varepsilon \ge ||x - w_0, b||$.

Lemma 3.2. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X, $\varepsilon > 0$ be given and $0 \neq b \in Y$. Then, $M \subseteq P^b_{W,\varepsilon}(x)$ if and only if there exists $f \in X^{\sharp}_b$ such that $f|_{W \times \langle b \rangle} = 0$, $\|f\| = 1$ and $f(x_0 - m, b) \geq \|x_0 - m, b\| - \varepsilon$ for all $m \in M$.

Proof. Let $M \subseteq P_{W,\varepsilon}^b(x)$ and choose $w_0 \in P_{W,\varepsilon}^b(x)$ with $||x - w_0, b|| = \lambda + \varepsilon$, where $\lambda = \inf\{||x - w, b|| : w \in W\}$. By Theorem 3.1, there exist $f \in X_b^{\sharp}$ such that $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x - w_0, b) \ge ||x - w_0, b|| - \varepsilon$. Then, $f(x - m, b) = f(x - w_0, b) \ge ||x - w_0, b|| - \varepsilon = \lambda \ge ||x - m, b|| - \varepsilon$, for all $m \in M$.

Theorem 3.3. $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X, $0 \neq b \in Y$ and $\varepsilon > 0$ be given. Then, W is (b,ε) -pseudo Chebyshev subspace if and only if there do not exist $f \in X_b^{\sharp}$, $x \in X$ and and infinitely many linearly independent elements $w_1, w_2, ...$ in W such that $\|x, b\| \leq 1$, $f|_{W \times \langle b \rangle} = 0$, $\|f\| = 1$ and $f(x - w_n, b) \geq \|x - w_n, b\| - \varepsilon$, for all $n \geq 1$.

Proof. First assume that there exist $f \in X_b^{\sharp}$, $x \in X$ and infinitely many linearly independent elements $w_1, w_2, ...$ in W such that $||x, b|| \leq 1$, $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and $f(x - w_n, b) \geq ||x - w_n, b|| - \varepsilon$, for all $n \geq 1$. Then, $w_n \in P_{W,\varepsilon}^b(x)$ for all $n \geq 1$. It follows that dim $P_{W,\varepsilon}^b(x_0) = \infty$ and hence W is not (b,ε) -pseudo Chebyshev subspace. Now, suppose that W is not (b,ε) -pseudo Chebyshev subspace. Since $P_{W,\varepsilon}^b(\lambda x) = \lambda P_{W,\varepsilon/\lambda}^b(x)$ and $P_{W,\varepsilon_1}^b(x) \subseteq P_{W,\varepsilon_2}^b(x)$ for all $0 < \varepsilon_1 \leq \varepsilon_2$, $x \in X$ and $\lambda > 0$, there exist $x_0 \in X$ with $||x_0, b|| \leq 1$ such that dim $P_{W,\varepsilon}^b(x_0) = \infty$. Hence, $P_{W,\varepsilon}(x_0)$ contains infinitely many linearly independent elements $g_1, g_2, ...$. By Lemma 3.2, there exists $f \in X_b^{\sharp}$ such that ||f|| = 1, $f|_{W \times \langle b \rangle} = 0$ and $f(x_0 - g_n, b) \geq ||x_0 - g_n, b|| - \varepsilon$ for all $n \geq 1$. ■

Definition 3.2. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, $0 \neq b \in Y$, $\varepsilon > 0$ be given and $f \in X_b^{\sharp}$. Define

$$M_{f,\varepsilon}^b = \{ x \in X : f(x,b) \ge \|x,b\| - \varepsilon, \|x,b\| \le 1 + \varepsilon \}.$$

Theorem 3.4. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X, $0 \neq b \in Y$ and $\varepsilon > 0$ be given. If $M_{f,\varepsilon}^b$ is finite dimensional for all $f \in X_b^{\sharp}$ with $\|f\| = 1$ and $f|_{W \times \langle b \rangle} = 0$, then W is (b,ε) -pseudo Chebyshev subspace.

Proof. Assume that W is not (b,ε) -pseudo Chebyshev subspace. Then by Theorem 3.3, there exist $f \in X_b^{\sharp}$, $x_0 \in X$ with $||x_0, b|| \leq 1$ and infinitely many linearly independent elements $w_1, w_2, ...$ in W such that ||f|| = 1, $f|_{W \times \langle b \rangle} = 0$, and $f(x_0 - w_n, b) \geq ||x_0 - w_n, b|| - \varepsilon$ for all $n \geq 1$. Since $||x_0 - w_n, b|| \leq f(x_0 - w_n, b) + \varepsilon = f(x_0, b) + \varepsilon \leq 1 + \varepsilon$, $x_0 - w_n \in M_{f,\varepsilon}^b$ for all $n \geq 1$. This is a contradiction.

Definition 3.3. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, $0 \neq b \in Y$, $\varepsilon > 0$ be given and let M be a subspace of X_b^{\sharp} . For each $x \in X$, put

$$D_{x,\varepsilon}^{M,b} = \{ y \in X : f(y,b) = f(x,b) \text{ for all } f \in M \& \|y,b\| \le \|x,b\|_M + \varepsilon \},\$$

where $||x, b||_M = \sup\{|f(x, b)| : ||f|| \le 1, f \in M\}.$

It is clear that $D_{x,\varepsilon}^{M,b}$ is a non-empty, closed and convex subset of (X, p_b) , for all $x \in X$.

We say that M has the property $(\mathbf{b},\varepsilon) - F^*$ if $D^{M,b}_{x,\varepsilon}$ is finite dimensional for all $x \in X$.

Theorem 3.5. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X, $\varepsilon > 0$ be given, $0 \neq b \in Y$ and let $M_0 = \{f \in X_b^{\sharp} : f|_{W \times \langle b \rangle} = 0\}$. Then, W is (b, ε) -pseudo Chebyshev subspace if and only if M_0 has the property $(b, \varepsilon) - F^*$.

Proof. If dim $D_{x,\varepsilon}^{M_0,b} = \infty$ for some $x \in X$, then there exist infinitely many linearly independent elements y_1, y_2, \dots in $D_{x,\varepsilon}^{M_0,b}$. Hence, $y_1 - y_n \in W$ for all $n \ge 1$ and

$$||y_1 - (y_1 - y_n), b|| = ||y_n, b|| \le ||x, b||_{M_0} + \varepsilon = ||y_1 - (y_1 - y_n), b||_{M_0} + \varepsilon$$

for all $n \ge 1$. Therefore, $y_1 - y_n \in P_{W,\varepsilon}^b(y_1)$ for all $n \ge 1$. It follows that W is not (\mathbf{b},ε) -pseudo Chebyshev subspace. Now, suppose that $\dim P_{W,\varepsilon}^b(x_0) = \infty$ for some $x_0 \in X$. Then, there exist infinitely many linearly independent elements g_1, g_2, \dots in $P_{W,\varepsilon}^b(x_0)$. It is easy to see that, $\|x_0 - g_n, b\| \le \|x_0 - g_n, b\|_{M_0} + \varepsilon = \|x_0, b\|_{M_0} + \varepsilon$ for all $n \ge 1$. It follows that $x_0 - g_n \in D_{x_0,\varepsilon}^{M_0,b}$ for all $n \ge 1$, which is a contradiction.

REFERENCES

- S. COBZAŞ and C. MUSTAŢĂ, Extension of bilinear functionals and best approximation in 2normed spaces, *Studia Univ. Babes-Bolyai Math.*, 43 (1998), No. 2, pp. 1–13.
- [2] S. ELUMALAI and M. SOURUPARANI, A characterization of best approximation and the operators in linear 2-normed spaces, *Bull. Cal. Math. Soc.*, 92 (2000), No. 4, pp. 235–248.
- [3] S. GÄHLER, Linear 2-normierte Räume, Math. Nachr., 28 (1965), pp. 1–45.
- [4] S.N. LAL, S. BHATTACHARYA and C. SREEDHAR, Complex 2-normed linear spaces and extension of linear 2-functionals, *Z. Anal. Anwendungen*, **20** (2001), No. 1, pp. 35–53.
- [5] Z. LEWANDOWSKA, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 42(90) (1999), No. 4, pp. 353–368.
- [6] Z. LEWANDOWSKA, Generalized 2-normed spaces, *Slupskie Prace Matematyczno-Fizyczne*, 1 (2001), pp. 33–40.
- [7] Z. LEWANDOWSKA, On 2-normed sets, Glas. Mat. Ser. III, 38(58) (2003), No. 1, pp. 99–110.
- [8] Z. LEWANDOWSKA, Banach-Steinhaus theorems for bounded linear operators with values in a generalized 2-normed space, *Glas. Mat. Ser. III*, 38(58) (2003), No. 2, pp. 329–340.
- [9] Z. LEWANDOWSKA, Bounded 2-linear operators on 2-normed sets, *Glas. Mat. Ser. III*, 39(59) (2004), No. 2, pp. 301–312.
- [10] SH. REZAPOUR, ε -weakly Chebyshev subspaces of Banach spaces, Anal. Theory Appl., **19** (2003), No. 2, pp. 130–135.
- [11] SH. REZAPOUR and H. MOHEBI, ε-weakly Chebyshev subspaces and quotient spaces, Bull. Iranian Math. Soc., 29 (2003), No. 2, pp. 27–33.
- [12] SH. REZAPOUR, Weak Compactness of the set of ε -extensions, *Bull. Iranian Math. Soc.*, **30** (2004), No. 1, pp. 13–20.