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1. I NTRODUCTION

A new structure of generalized metric spaces(Ψ, d) have been introduced by Mustafa and
Sims [13]. They are calledG-metric spaces. Note that the metric space(Ψ, d) is considered
as a generalization of metric space. Many fixed point results for various mappings in this new
structure have been developed. Many researchers proved many interesting results in fixed point
theory in this metric space; we can refer the reader to consider [2, 4, 14, 23, 16]. Also, various
problems of fixed point problems of contractive mappings in metric spaces endowed with a
partially order have been studied [3, 5, 9, 10].

Different generalizations of metric spaces were considered by many researchers. For ex-
ample, the concepts of 2-matric spaces andD-metric spaces, respectively, were introduce by
Gähler [8] and Dhage [6], but some authors pointed out that these attempts are not valid (see
[11, 19, 17, 18, 15]). A modification of the definition of D-metric introduced recentlyby Dhage
[6], called theD∗-metric. For more results, we refer the reader to consider [25, 28, 29].

In this article, we introduce the concept of partial S-metric spaces. Many fixed point theo-
rems in ordered partialS∗-metric Spaces and common fixed point theorem for self-mapping on
completeS∗-metric spaces are investigated.

We begin with the following definitions.

Definition 1.1. Let Ψ be a nonempty set andG be a nonnegative function on the setΨ×Ψ×Ψ
that satisfies the following condition: for allθ, υ, ω, α ∈ Ψ,

(G1) G(θ, υ, ω) = 0 if θ = υ = ω,
(G2) 0 < G(θ, θ, υ) for all θ, υ ∈ Ψ with θ 6= υ,
(G3) G(θ, θ, υ) ≤ G(θ, υ, ω) for all θ, υ, ω ∈ Ψ with θ 6= υ,
(G4) G(θ, υ, ω) = G(θ, ω, υ) = G(υ, ω, θ) = · · · ,
(G5) G(θ, υ, ω) ≤ G(θ, α, α) + G(α, υ, ω) for all θ, υ, ω, α ∈ Ψ.

The functionG is called ageneralized metricor aG-metric onΨ and the pair(Ψ,G) is called a
G-metric space.

Definition 1.2. A G-metric space(Ψ,G) is symmetric if

(G6) G(θ, υ, υ) = G(θ, θ, υ) for all θ, υ ∈ Ψ.

We can find some examples and basic properties ofG-metric spaces in Mustafa and Sims
[13].

Definition 1.3. Let Ψ be a nonempty set. A generalized metric (orD∗-metric) onΨ is a func-
tion: D∗ : Ψ3 −→ R+ that satisfies the following conditions for eachθ, υ, ω, α ∈ Ψ.

(1) D∗(θ, υ, ω) ≥ 0,
(2) D∗(θ, υ, ω) = 0 if and only if θ = υ = ω,
(3) D∗(θ, υ, ω) = D∗(p{θ, υ, υ}),(symmetry ) wherep is a permutation function,
(4) D∗(θ, υ, ω) ≤ D∗(θ, υ, α) + D∗(α, ω, ω).

The pair(Ψ, D∗) is called a generalized metric (orD∗-metric) space.

Remark 1.1. It is easy to see that every symmetricG-metric is aD∗-metric.

Proof. For all θ, υ, ω, α ∈ Ψ we have

G(θ, υ, ω) = G(ω, θ, υ)

≤ G(ω, α, α) + G(α, θ, υ) = G(θ, υ, α) + G(α, ω, ω).

Remark 1.2. ([30]) In aD∗-metric space,D∗(θ, θ, υ) = D∗(θ, υ, υ).
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For more details ofD∗-metric see [31, 33]
Note that the converse may not hold as shown in the following example.

Example 1.1.LetΨ = R and define the functionD∗ such that

D∗(θ, υ, ω) = |θ + y − 2ω|+ |θ + ω − 2υ|+ |υ + ω − 2θ|.

Then one can easily verify that(R, D∗) is a D∗-metric, but it is notG-metric. For, if setθ =
5, υ = −5 andω = 0 thenG(θ, θ, υ) ≤ G(θ, υ, ω) is not hold.

Now, we recall the concept ofS-metric spaces, which modifies theD∗-metric andG-metric
spaces as follows:

Definition 1.4. Let Ψ be a nonempty set. AnS-metriconΨ is a functionS : Ψ3 → [0,∞) that
satisfies the following conditions, for eachθ, υ, ω, α ∈ Ψ,

(1) S(θ, υ, ω) ≥ 0,
(2) S(θ, υ, ω) = 0 if and only if θ = υ = ω,
(3) S(θ, υ, ω) ≤ S(θ, θ, α) + S(υ, υ, α) + S(ω, ω, α).

The pair(Ψ, S) is called anS-metric space.

Remark 1.3. It is clear that everyD∗-metric is anS-metric.

Namely, for allθ, υ, ω, α ∈ Ψ we have

D∗(θ, υ, ω) ≤ D∗(θ, υ, α) + D∗(α, ω, ω) = D∗(α, y, θ) + D∗(ω, ω, α)

≤ D∗(α, y, α) + D∗(α, θ, θ) + D∗(ω, ω, α)

= D∗(α, α, υ) + D∗(α, θ, θ) + D∗(ω, ω, α)

= D∗(θ, θ, α) + D∗(υ, υ, α) + D∗(ω, ω, α).

Note that it is not always true that everyS-metric is aD∗-metric.

Example 1.2.LetΨ = Rn and|| · || a norm onΨ, thenS(θ, υ, ω) = ||υ + ω − 2θ||+ ||υ − ω||
is anS-metric onΨ, but it is notD∗-metric,since it is not symmetry.

Lemma 1.1. [26, 27, 32]In anS-metric space, we haveS(θ, θ, υ) = S(υ, υ, θ).

In this section we recall the concept of partialD∗-metric space.

Definition 1.5. [24] A partialD∗-metric on a nonempty setΨ is a functionp∗ : Ψ×Ψ×Ψ → R+

such that for allθ, υ, ω, α ∈ Ψ :

(p1) θ = υ = ω if and only if p∗(θ, θ, θ) = p∗(θ, υ, ω) = p∗(υ, υ, υ) = p∗(ω, ω, ω),
(p2) p∗(θ, θ, θ) ≤ p∗(θ, υ, ω),
(p3) p∗(θ, υ, ω) = p∗(p{θ, υ, υ}),(symmetry) wherep is a permutation function,
(p4) p∗(θ, υ, ω) ≤ p∗(θ, υ, α) + p∗(α, ω, ω)− p∗(α, α, α).

A partial D∗-metric space is a pair(Ψ, p∗) such thatΨ is a nonempty set andp∗ is a partial
D∗-metric onΨ. It is clear that, ifp∗(θ, υ, ω) = 0, then from (p1) and (p2) θ = υ = ω. But if
θ = υ = ω, p∗(θ, υ, ω) may not be0. We can consider the partialD∗-metric space to be the pair
(R+, p∗), wherep∗(θ, υ, ω) = max{θ, υ, υ} for all θ, υ, υ ∈ R+. Then(R+, p∗) is aD∗-metric
space.

It is easy to see that everyD∗-metric is a partialD∗-metric, but the converse is not necessarily
hold.

In the following examples a partialD∗-metric that fails to satisfy propertiesD∗-metric.
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Example 1.3.Assume thatp∗ is a nonnegative mapping defined on the setΨ = R+×R+×R+.
Define the mapping

p∗(θ, υ, ω) = |θ − υ|+ |υ − ω|+ |θ − ω|+ max{θ, υ, υ}.

Then(Ψ, p∗) is a partialD∗-metric, but it is notD∗-metric.

Example 1.4. Let (Ψ, p) be a partial metric space andp∗ : R+ × R+ × R+ −→ R+ be a
mapping defined as follows:

p∗(θ, υ, ω) = p(θ, υ) + p(θ, ω) + p(υ, ω)− p(θ, θ)− p(υ, υ)− p(ω, ω).

Then clearlyp∗ is a partialD∗-metric.

Remark 1.4. [24] Let (Ψ, p∗) be a partialD∗-metric space. Thenp∗(θ, θ, υ) = p∗(θ, υ, υ).

Lemma 1.2. Let (Ψ, p∗) be a partialD∗-metric space. If definep(θ, υ) = p∗(θ, υ, υ), then
(Ψ, p) is a partial metric space

Proof. (p1) θ = υ if and anly if p∗(θ, θ, θ) = p∗(θ, υ, υ) = p(υ, υ, υ) implies thatp(θ, θ) =
p(θ, υ) = p(υ, υ),

(p2) p∗(θ, θ, θ) ≤ p∗(θ, υ, υ) implies thatp(θ, θ) ≤ p(θ, υ),
(p3) p∗(θ, υ, υ) = p∗(υ, θ, θ) implies thatp(θ, υ) = p(υ, θ),
(p4) p∗(υ, υ, θ) ≤ p∗(υ, υ, ω) + p∗(ω, θ, θ)− p∗(ω, ω, ω) implies that

p(θ, υ) ≤ p(υ, ω) + p(ω, θ)− p(ω, ω).

2. PARTIAL S-METRIC SPACE

we introduce in this section the notion partialS-metric space and we prove some properties
of this space.

Definition 2.1. A partial S-metric on a nonempty setΨ is a functionS∗ : Ψ × Ψ × Ψ → R+

such that for allθ, υ, ω, α ∈ Ψ :

(s1) θ = υ = ω if and only if S∗(θ, θ, θ) = S∗(θ, υ, ω) = S∗(υ, υ, υ) = S∗(ω, ω, ω),
(s2) S∗(θ, θ, θ) ≤ S∗(θ, θ, υ),
(s3) S∗(θ, υ, ω) ≤ S∗(θ, θ, α) + S∗(υ, υ, α) + S∗(ω, ω, α)− 2S∗(α, α, α).

A partial S-metric space is a pair(Ψ, S∗) such thatΨ is a nonempty set andS∗ is a par-
tial S-metric onΨ. A basic example of a partialS-metric space is the pair(R+, S∗), where
S∗(θ, υ, ω) = max{θ, υ, υ} for all θ, υ, ω, α ∈ Ψ ∈ R+.

Remark 2.1. It is easy to see that every partialD∗-metric is a partialS-metric. Namely, for all
θ, υ, ω, α ∈ Ψ we have

p∗(θ, υ, ω) ≤ p∗(θ, υ, α) + p∗(α, ω, ω)− p∗(α, α, α)

= p∗(α, y, θ) + p∗(ω, ω, α)− p∗(α, α, α)

≤ p∗(α, y, α) + p∗(α, θ, θ) + p∗(ω, ω, α)− p∗(α, α, α)− p∗(α, α, α)

= p∗(α, α, υ) + p∗(α, θ, θ) + p∗(ω, ω, α)− 2p∗(α, α, α)

= p∗(θ, θ, α) + p∗(υ, υ, α) + p∗(ω, ω, α)− 2p∗(α, α, α).

But in general the converse is not hold (see the following example).
It is easy to see that everyS-metric is a partialS-metric, but the converse it is not necessarily

hold.
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In general example of a partialS-metric space is the pair(R+, S∗), whereS∗(θ, υ, ω) =
max{aθ + bυ, (α + b)ω} for all θ, υ, ω ∈ R+ anda, b > 0. This partialS-metric is not only
S−metric but also it is not partialD∗-metric.

In the following example a partialS-metric fails to satisfy propertiesS-metric.

Example 2.1. (a) Assume that(Ψ, S) is anS-metric space anda be a positive real number and
let S∗ : Ψ×Ψ×Ψ −→ Ψ be a mapping defined as follows:

S∗(θ, υ, ω) = S(θ, υ, ω) + a.

It is clear that(Ψ, S) is a partialS-metric, but it is notS-metric.
(b) Let (Ψ, ||, ||) be a norm space and letS∗ : Ψ × Ψ × Ψ −→ Ψ be a mapping defined as

follows:
S∗(θ, υ, ω) = ||θ − ω||+ ||υ − ω||+ max{||θ||, ||υ||, ||ω||}.

Then it is easy to see that it is a partialS-metric, but it is notS-metric.

Lemma 2.1. For partial S-metricS∗, we have
(1) S∗(θ, θ, υ) = S∗(υ, υ, θ).
(2) If S∗(θ, θ, υ) = 0 thenθ = υ.

Proof. (1) (i)

S∗(θ, θ, υ) ≤ S∗(θ, θ, θ) + S∗(θ, θ, θ) + S∗(υ, υ, θ)− 2S∗(θ, θ, θ)

= S∗(υ, υ, θ),

and similarly
(ii)

S∗(υ, υ, θ) ≤ S∗(υ, υ, υ) + S∗(υ, υ, υ) + S∗(θ, θ, υ)− 2S∗(υ, υ, υ)

= S∗(θ, θ, υ).

Hence by (i),(ii) we getS∗(θ, θ, υ) = S∗(υ, υ, θ).
(2) (i) S∗(θ, θ, θ) ≤ S∗(θ, θ, υ) = 0 and similarly

(ii) S∗(υ, υ, υ) ≤ S∗(υ, υ, θ) = S∗(θ, θ, υ) = 0. Hence by (i),(ii) we getS∗(θ, θ, υ) =
S∗(θ, θ, θ) = S∗(υ, υ, υ) = 0, that isθ = υ.

Lemma 2.2. Let (Ψ, p) be a partial metric space andS∗ be a nonnegative mapping define on
the setR+ × R+ × R+ such that

S∗(θ, υ, ω) = max{p(θ, υ), p(θ, ω), p(υ, ω)}.
ThenS∗ is a partialS-metric.

Proof. (s1) It is easy to see that:θ = υ = ω ⇐⇒ S∗(θ, θ, θ) = S∗(θ, υ, ω) = S∗(υ, υ, υ) =
S∗(ω, ω, ω).

Sincep(θ, θ) ≤ p(θ, υ) hence
(s2) S∗(θ, θ, θ) = p(θ, θ) ≤ p(θ, υ) = S∗(θ, θ, υ).

Since

p(θ, υ) ≤ p(θ, α) + p(α, υ)− p(α, α)

< p(θ, α) + p(y, α) + p(ω, α)− 2p(α, α),

p(θ, ω) < p(θ, α) + p(y, α) + p(ω, α)− 2p(α, α),

and
p(υ, ω) < p(θ, α) + p(υ, α) + p(ω, α)− 2p(α, α),
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we obtain
(s3)

S∗(θ, υ, ω) = max{p(θ, υ), p(θ, ω), p(y, ω)}
≤ p(θ, α) + p(y, α) + p(ω, α)− 2p(α, α)

= S∗(θ, θ, α) + S∗(υ, υ, α) + S∗(ω, ω, α)− 2S∗(α, α, α).

Lemma 2.3. Let (Ψ, p) be a complete partial metric space andS∗ : R+ × R+ × R+ → R+ be
a mapping defined as follows

S∗(θ, υ, ω) = max{p(θ, υ), p(θ, ω), p(y, ω)}.
Then(Ψ, S∗) is a complete partialS-metric.

Proof. Let {θn} be a Cauchy sequence in(Ψ, S∗), since(Ψ, p) is complete space, hence there
existsθ ∈ Ψ such thatp(θn, θ) −→ p(θ, θ). Therefore,

lim
n→∞

S∗(θn, θn, θ) = lim
n→∞

max{p(θn, θn), p(θn, θ), p(θn, θ)}

= lim
n→∞

p(θn, θ) = p(θ, θ) = S∗(θ, θ, θ)}.

That is{θn} is a Cauchy sequence in(Ψ, S∗).

Definition 2.2. Let (Ψ, S∗) be a partialS-metric space. Forr > 0 define

BS∗(θ, r) = {y ∈ Ψ : S∗(θ, θ, υ) < S∗(θ, θ, θ) + r}

Lemma 2.4. Let (Ψ, S∗) be a partialS-metric space. Ifr > 0, then ballBS∗(θ, r) with center
θ ∈ Ψ and radiusr is open ball.

Proof. Let υ ∈ BS∗(θ, r), henceS∗(θ, θ, υ) < S∗(θ, θ, θ) + r. SetS∗(θ,θ,θ)−S∗(θ,θ,υ)+r
2

= δ. Let
z ∈ BS∗(y, δ), hence

S∗(υ, υ, ω) < S∗(υ, υ, υ) + δ = S∗(υ, υ, υ) +
S∗(θ, θ, θ)− S∗(θ, θ, υ) + r

2
.

By triangular inequality we have

S∗(θ, θ, ω) = S∗(ω, ω, θ) ≤ 2S∗(ω, ω, υ) + S∗(θ, θ, υ)− 2S∗(υ, υ, υ)

= 2S∗(υ, υ, ω) + S∗(θ, θ, υ)− 2S∗(υ, υ, υ)

< 2S∗(υ, υ, υ) + S∗(θ, θ, θ) + r − 2S∗(υ, υ, υ)

= S∗(θ, θ, θ) + r.

HenceBS∗(υ, δ) ⊆ BS∗(θ, r). That is the ballBS∗(θ, r) is an open ball.

Each partialS-metricS∗ onΨ generates a topologyτS∗ onΨ which has as a base the family
of openS∗-balls{BS∗(θ, ε) : θ ∈ Ψ, ε > 0}.

Let (Ψ, S∗) be a partialS-metric space andA ⊂ Ψ.
(1) If for everyθ ∈ A there existsr > 0 such thatBp∗(θ, r) ⊂ A, then subsetA is called an

open subset ofΨ.
(2) a sequence{θn} in a partial S-metric space(Ψ, S∗) converges toΨ if and only if

S∗(θ, θ, θ) = limn→∞ S∗(θn, θn, θ) = limn→∞ S∗(θn, θn, θn). That is for eachε > 0 there
existsn0 ∈ N such that

|S∗(θn, θn, θ)− S∗(θ, θ, θ)| < ε and|S∗(θn, θn, θn)− S∗(θ, θ, θ)| < ε,
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for all n ≥ n0. In these cases we conclude for eachε > 0 there existsn0 ∈ N such that

|S∗(θn, θn, θn)− S∗(θn, θn, θ)| < ε,

for all n ≥ n0.
(3) A sequence{θn} in a partialS-metric space(Ψ, S∗) is called a Cauchy sequence if there

exists (and is finite)limn,m→∞ S∗(θn, θn, θm).

Let τS∗ be the set of all open subsets ofΨ , thenτS∗ is a topology onΨ (induced by the
partialS-metricS∗).

A partialS-metric space(Ψ, S∗) is said to be complete if every Cauchy sequence{θn} in Ψ
converges, with respect toτS∗, to a pointθ ∈ Ψ.

Lemma 2.5. Let (Ψ, S∗) be a partialS-metric space. If sequence{θn} in Ψ converges toθ,
thenθ is unique.

Proof. Let {θn} converges toθ andυ, then we have

lim
n→∞

S∗(θn, θn, θn) = lim
n→∞

S∗(θn, θn, θ) = S∗(θ, θ, θ)

and
lim

n→∞
S∗(θn, θn, θn) = lim

n→∞
S∗(θn, θn, υ) = S∗(υ, υ, υ).

Then by third condition partialS-metric we have:

S∗(θ, θ, υ) ≤ 2S∗(θ, θ, θn) + S∗(υ, υ, θn)− 2S∗(θn, θn, θn)

≤ 2(S∗(θn, θn, θ)− S∗(θn, θn, θn))

+ S∗(θn, θn, υ)− S∗(υ, υ, υ) + S∗(υ, υ, υ).

By taking limit asn →∞ we haveS∗(θ, θ, υ) ≤ S∗(υ, υ, υ). Hence,S∗(θ, θ, υ) = S∗(υ, υ, υ).
Similarly, we can show thatS∗(θ, θ, υ) ≤ S∗(θ, θ, θ). That isS∗(θ, θ, υ) = S∗(θ, θ, θ) =
S∗(υ, υ, υ). Therefore,θ = υ.

Lemma 2.6. Let (Ψ, S∗) be a partialS-metric space. Then the convergent sequence{θn} in Ψ
is Cauchy.

Proof. Let {θn} converges toθ, that is for eachε > 0 there existsn0 ∈ N such that

|S∗(θn, θn, θ)− S∗(θ, θ, θ)| < ε ∀n ≥ n0,

|S∗(θn, θn, θn)− S∗(θ, θ, θ)| < ε ∀n ≥ n0,

and
|S∗(θn, θn, θn)− S∗(θn, θn, θ)| < ε ∀n ≥ n0.

Then we have:

S∗(θn, θn, θm) ≤ 2S∗(θn, θn, θ) + S∗(θm, θm, θ)− 2S∗(θ, θ, θ)

< 2ε + ε + S∗(θ, θ, θ).

Similarly,

S∗(θ, θ, θ) ≤ 3S∗(θ, θ, θn)− 2S∗(θn, θn, θn)

= 2(S∗(θn, θn, θ)− S∗(θn, θn, θn)) + S∗(θ, θ, θn)

≤ 2(S∗(θn, θn, θ)− S∗(θn, θn, θn))

+ 2S∗(θ, θ, θm) + S∗(θn, θn, θm)− 2S∗(θm, θm, θm).

Hence,

S∗(θ, θ, θ) < 2ε + 2ε + S∗(θn, θn, θm).
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By above inequalities we have

|S∗(θn, θn, θm)− S∗(θ, θ, θ)| < 4ε.

That is
lim

n→∞
S∗(θn, θn, θm) = S∗(θ, θ, θ).

Lemma 2.7. Let (Ψ, S∗) be a partialS-metric space. If there exist sequences{θn} and{υn}
such thatlimn→∞ θn = θ and limm→∞ υm = υ, then

lim
m,n→∞

S∗(θn, θn, υm) = S∗(θ, θ, υ).

Proof. Sincelimn→∞ θn = Ψ then for eachε > 0 there existsn0 ∈ N such that

|S∗(θn, θn, θ)− S∗(θ, θ, θ)| < ε, |S∗(θn, θn, θn)− S∗(θ, θ, θ)| < ε

and
|S∗(θn, θn, θn)− S∗(θn, θn, θ)| < ε,

for all n ≥ n0. Similarly, sincelimm→∞ υm = υ, then for eachε > 0 there existsn0 ∈ N such
that

|S∗(υm, υm, υ)− S∗(υ, υ, υ)| < ε, |S∗(υm, υm, υm)− S∗(υ, υ, υ)| < ε

and
|S∗(υm, υm, υm)− S∗(υm, υm, υ)| < ε,

for all m ≥ n0.
Then we have

S∗(θn, θn, υm) ≤ 2S∗(θn, θn, θ) + S∗(υm, υm, θ)− 2S∗(θ, θ, θ)

≤ 2(S∗(θn, θn, θ)− S∗(θ, θ, θ)) + 2S∗(υm, υm, υ)

+ S∗(θ, θ, υ)− S∗(υ, υ, υ)

< 2ε + 2ε + S∗(θ, θ, υ),

hence we obtain

(2.1) S∗(θn, θn, υm)− S∗(θ, θ, υ) < 4ε.

On the other hand, we get

S∗(θ, θ, υ) ≤ 2S∗(θ, θ, θn) + S∗(υ, υ, θn)− 2S∗(θn, θn, θn)

≤ 2(S∗(θn, θn, θ)− S∗(θn, θn, θn)) + 2S∗(υ, υ, υm)

− S∗(υm, υm, υm) + S∗(θn, θn, υm)

< 4ε + S∗(θn, θn, υm),

that is

(2.2) S∗(θ, θ, υ)− S∗(θn, θn, υm) < 4ε.

Therefore by relations (2.1) and (2.2) we have

|S∗(θn, θn, υm)− S∗(θ, θ, υ)| < 4ε,

that is
lim

m,n→∞
S∗(θn, θn, υm) = S∗(θ, θ, υ).
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Lemma 2.8. Let (Ψ, S∗) be a partialS-metric space then

Ss(θ, υ, ω) = S∗(θ, θ, υ) + S∗(υ, υ, ω) + S∗(ω, ω, θ)− S∗(θ, θ, θ)− S∗(υ, υ, υ)

− S∗(ω, ω, ω),

is anSb-metric onΨ for b ≥ 2.

Proof. First we show thatSs(θ, θ, υ) = Ss(υ, υ, θ). Since,

Ss(θ, θ, υ) = S∗(θ, θ, θ) + S∗(θ, θ, υ) + S∗(υ, υ, θ)− 2S∗(θ, θ, θ)− S∗(υ, υ, υ)

= 2S∗(θ, θ, υ)− S∗(θ, θ, θ)− S∗(υ, υ, υ).

Similarly, we can show that

Ss(υ, υ, θ) = 2S∗(θ, θ, υ)− S∗(θ, θ, θ)− S∗(υ, υ, υ).

Therefore,Ss(θ, θ, υ) = Ss(υ, υ, θ). Also, always we have that

S∗(θ, θ, υ)− S∗(θ, θ, θ) ≤ Ss(θ, θ, υ).

(i) If Ss(θ, υ, ω) = 0 then it follows thatS∗(θ, υ, ω) = S∗(θ, θ, θ) = S∗(υ, υ, υ) = S∗(ω, ω, ω).
That isθ = υ = ω. Conversely, ifθ = υ = ω then we haveSs(θ, υ, ω) = 0.

(ii) Since

S∗(θ, υ, ω) ≤ S∗(θ, θ, α) + S∗(υ, υ, α) + S∗(ω, ω, α)− 2S∗(α, α, α).

Therefore,

Ss(θ, υ, ω) = S∗(θ, θ, υ) + S∗(υ, υ, ω) + S∗(ω, ω, θ)

− S∗(θ, θ, θ)− S∗(υ, υ, υ)− S∗(ω, ω, ω)

≤ 2S∗(θ, θ, α)− 2S∗(α, α, α) + S∗(υ, υ, α)

+ 2S∗(υ, υ, α)− 2S∗(α, α, α) + S∗(ω, ω, α)

+ 2S∗(ω, ω, α)− 2S∗(α, α, α) + S∗(θ, θ, α)

− S∗(θ, θ, θ)− S∗(υ, υ, υ)− S∗(ω, ω, ω)

= 3S∗(α, α, θ)− 2S∗(α, α, α)− S∗(θ, θ, θ)

+ 3S∗(α, α, υ)− 2S∗(α, α, α)− S∗(υ, υ, υ)

+ 3S∗(α, α, ω)− 2S∗(α, α, α)− S∗(ω, ω, ω)

≤ 2[2S∗(α, α, θ)− S∗(α, α, α)− S∗(θ, θ, θ)]

+ 2[2S∗(α, α, υ)− S∗(α, α, α)− S∗(υ, υ, υ)]

+ 2[2S∗(α, α, ω)− S∗(α, α, α)− S∗(ω, ω, ω)]

= 2[Ss(α, α, θ) + Ss(α, α, υ) + Ss(α, α, ω)]

= 2[Ss(θ, θ, α) + Ss(υ, υ, α) + Ss(ω, ω, α)].

The following lemma plays an important role to give fixed point results on a partialS-metric
space.

Lemma 2.9. Let (Ψ, S∗) be a partialS-metric space andb ≥ 2.
(a) {θn} is a Cauchy sequence in(Ψ, S∗) if and only if it is a Cauchy sequence in theSb-

metric space(Ψ, Ss).
(b) A partialS-metric space(Ψ, S∗) is complete if and only if theSb-metric space(Ψ, Ss) is

complete. Furthermore,limn→∞ S(θn, θn, θ) = 0 if and only if

S∗(θ, θ, θ) = lim
n→∞

S∗(θn, θn, θ) = lim
n,m→∞

S∗(θn, θn, θm).
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Proof. First we show that every Cauchy sequence in(Ψ, S∗) is a Cauchy sequence in(Ψ, Ss).
To this end let{θn} be a Cauchy sequence in(Ψ, S∗). Then there existslimn,m→∞ S∗(θn, θn, θm) =
limn→∞ S∗(θn, θn, θn). Since

Ss(θn, θn, θm) = 2S∗(θn, θn, θm)− S∗(θn, θn, θn)− S∗(θm, θm, θm).

Hence, we have

lim
n,m→∞

Ss(θn, θn, θm)

= 2 lim
n→∞

S∗(θn, θn, θm)− lim
n→∞

S∗(θn, θn, θn)− lim
m→∞

S∗(θm, θm, θm) = 0.

We conclude that{θn} is a Cauchy sequence in(Ψ, Ss). Next we prove that completeness
of (Ψ, Ss) implies completeness of(Ψ, S∗). Indeed, if{θn} is a Cauchy sequence in(Ψ, S∗)
then it is also a Cauchy sequence in(Ψ, Ss). Since theSb-metric space(Ψ, Ss) is complete we
deduce that there existsυ ∈ Ψ such thatlimn→∞ Ss(θn, θn, υ) = 0. Since,

Ss(θn, θn, υ) = 2S∗(θn, θn, υ)− S∗(υ, υ, υ)− S∗(θn, θn, θn).

Also,
0 ≤ S∗(θn, θn, υ)− S∗(υ, υ, υ) ≤ Ss(θn, θn, υ),

and
0 ≤ S∗(θn, θn, υ)− S∗(θn, θn, θn) ≤ S∗(θn, θn, υ).

Therefore,

lim
n→∞

S∗(θn, θn, υ) = lim
n→∞

S∗(θn, θn, θn) = lim
n→∞

S∗(υ, υ, υ).

Hence we follow that{θn} is a convergent sequence in(Ψ, S∗).
Now we prove that every Cauchy sequence{θn} in (Ψ, Ss) is a Cauchy sequence in(Ψ, S∗).

Let ε = 1
2
. Then there existsn0 ∈ N such thatSs(θn, θn, θm) < 1

2
for all n, m ≥ n0. Since

S∗(θn, θn, θn)

≤ 4S∗(θn0 , θn0 , θn)− 3S∗(θn, θn, θn)− S∗(θn0 , θn0 , θn0) + S∗(θn, θn, θn)

≤ 2Ss(θn, θn, θn0) + S∗(θn0 , θn0 , θn0).

Thus, we have

S∗(θn, θn, θn) ≤ 2Ss(θn, θn, θn0) + S∗(θn0 , θn0 , θn0)

≤ 1 + S∗(θn0 , θn0 , θn0).

Consequently the sequence{S∗(θn, θn, θn)} is bounded inR, and so there exists aa ∈ R such
that a subsequence{S∗(θnk

, θnk
, θnk

)} is convergent toa, i.e. limk→∞ S∗(θnk
, θnk

, θnk
) = a.

It remains to prove that{S∗(θn, θn, θn)} is a Cauchy sequence inR. Since{θn} is a Cauchy
sequence in(Ψ, Ss), for given ε > 0, there existsnε such thatSs(θn, θn, θm) < ε

2
for all

n, m ≥ nε. Thus, for alln, m ≥ nε,

|S∗(θn, θn, θn)− S∗(θm, θm, θm)|
≤ 4S∗(θn, θn, θm)− 3S∗(θn, θn, θn)− S∗(θm, θm, θm)

+ S∗(θn, θn, θn)− S∗(θm, θm, θm)

≤ 2Ss(θn, θn, θm) < ε

On the other hand,

|S∗(θn, θn, θn)− a|
≤ |S∗(θn, θn, θn)− S∗(θnk

, θnk
, θnk

)|+ |S∗(θnk
, θnk

, θnk
)− a|

< ε + ε = 2ε
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for all n, nk ≥ nε. Hencelimn→∞ S∗(θn, θn, θn) = a.
Now, we show that{θn} is a Cauchy sequence in(Ψ, S∗). We have,

|2S∗(θn, θn, θm)− 2a|
= |Ss(θn, θn, θm) + S∗(θn, θn, θn)− a + S∗(θm, θm, θm)− a|
≤ Ss(θn, θn, θm) + |S∗(θn, θn, θn)− a|+ |S∗(θm, θm, θm)− a|

<
ε

2
+ 2ε + 2ε =

9

2
ε.

That is,{θn} is a Cauchy sequence in(Ψ, S∗).
We shall have established the lemma if we prove that(Ψ, Ss) is complete if so is(Ψ, S∗). Let

{θn} be a Cauchy sequence in(Ψ, Ss). Then{θn} is a Cauchy sequence in(Ψ, S∗), and so it is
convergent to a pointυ ∈ Ψ with

lim
n,m→∞

S∗(θn, θn, θm) = lim
n→∞

S∗(υ, υ, θn) = S∗(υ, υ, υ).

Thus, givenε > 0, there existsnε ∈ N such that

S∗(υ, υ, θn)− S∗(υ, υ, υ) <
ε

2
and |S∗(υ, υ, υ)− S∗(θn, θn, θn)| < ε

2

whenevern ≥ nε. Hence, we have

Ss(υ, υ, θn) = 2S∗(υ, υ, θn)− S∗(θn, θn, θn)− S∗(υ, υ, υ)

≤ |S∗(υ, υ, θn)− S∗(υ, υ, υ)|+ |S∗(υ, υ, θn)− S∗(θn, θn, θn)|

<
ε

2
+

ε

2
= ε

whenevern ≥ nε. Therefore(Ψ, Ss) is complete.
Finally, it is a simple matter to check thatlimn→∞ Ss(α, α, θn) = 0 if and only if

S∗(α, α, α) = lim
n→∞

S∗(α, a, θn) = lim
n,m→∞

S∗(θn, θn, θm).

Lemma 2.10. If S∗ is a partialS-metric onΨ, then the functionsSs, Sm : Ψ× Ψ× Ψ → R+

given by

Ss(θ, υ, ω)

= S∗(θ, θ, υ) + S∗(υ, υ, ω) + S∗(ω, ω, θ)− S∗(θ, θ, θ)− S∗(υ, υ, υ)− S∗(ω, ω, ω)

and

Sm(θ, υ, ω) = max

 2S∗(θ, θ, υ)− S∗(θ, θ, θ)− S∗(υ, υ, υ),
2S∗(υ, υ, ω)− S∗(υ, υ, υ)− S∗(ω, ω, ω),
2S∗(ω, ω, θ)− S∗(ω, ω, ω)− S∗(θ, θ, θ)


for everyθ, υ, υ ∈ Ψ, are equivalentS-metrics onΨ.

Proof. It is easy to see thatSs andSm areS-metrics onΨ. Let θ, υ, ω ∈ Ψ. It is obvious that

Sm(θ, υ, ω) ≤ 2Ss(θ, υ, ω).
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On the other hand, sincea + b + c ≤ 3 max{a, b, c}, it provides that

Ss(θ, υ, ω)

= S∗(θ, θ, υ) + S∗(υ, υ, ω) + S∗(ω, ω, θ)− S∗(θ, θ, θ)− S∗(υ, υ, υ)− S∗(ω, ω, ω)

=
1

2
[2S∗(θ, θ, υ)− S∗(θ, θ, θ)− S∗(υ, υ, υ)]

+
1

2
[2S∗(υ, υ, ω)− S∗(υ, υ, υ)− S∗(ω, ω, ω)]

+
1

2
[2S∗(ω, ω, θ)− S∗(ω, ω, ω)− S∗(θ, θ, θ)]

≤ 3

2
max

 2S∗(θ, θ, υ)− S∗(θ, θ, θ)− S∗(υ, υ, υ),
2S∗(υ, υ, ω)− S∗(υ, υ, υ)− S∗(ω, ω, ω),
2S∗(ω, ω, θ)− S∗(ω, ω, ω)− S∗(θ, θ, θ)


=

3

2
Sm(θ, υ, ω).

Thus,we have
1

2
Sm(θ, υ, ω) ≤ Ss(θ, υ, ω) ≤ 3

2
Sm(θ, υ, ω),

these inequalities implies thatSs andSn are equivalent.

Remark 2.2. Note that:

Ss(θ, θ, υ) = 2S∗(θ, θ, υ)− S∗(θ, θ, θ)− S∗(υ, υ, υ) = Sm(θ, θ, υ).

A mappingF : Ψ → Ψ is said to be continuous atθ0 ∈ Ψ, if for every ε > 0, there exists
δ > 0 such thatF (BS∗(θ0, δ)) ⊆ BS∗(Fθ0, ε).

3. FIXED POINT RESULT

In this section we prove some fixed point theorems in ordered partialS∗-metric spaces.

Theorem 3.1.Let(Ψ,�) be a partially ordered set and suppose that there is a partialS-metric
S∗ on Ψ such that(Ψ, S∗) is a complete partialS-metric space. SupposeF : Ψ → Ψ is a
continuous and nondecreasing mapping such that

S∗(Fθ, Fυ, Fω) ≤

(3.1) k max

{
S∗(θ, υ, ω), S∗(θ, θ, Fθ), S∗(υ, υ, Fυ), S∗(ω, ω, Fω)
1
2
[S∗(θ, θ, Fυ) + S∗(θ, θ, Fω)]

}
for all θ, υ, ω ∈ Ψ with ω � υ � θ, where0 < k < 1. If there exists anθ0 ∈ Ψ with θ0 � Fθ0,
then there existsθ ∈ Ψ such thatθ = Fθ. Moreover,S∗(θ, θ, θ) = 0.

Proof. If Fθ0 = θ0, then the proof is complete, so supposeθ0 6= Fθ0. Now let θn = Fθn−1 for
n = 1, 2, · · · . If θn0 = θn0+1 for somen0 ∈ N, then it is clear thatθn0 is a fixed point ofF .
Thus assumeθn 6= θn+1 for all n ∈ N. Notice that, sinceθ0 � Fθ0 andF is nondecreasing, we
have

θ0 � θ1 � θ2 � · · · � θn � θn+1 � · · · .

By inequality (3.1) for these points we have
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S∗(θn+1, θn+1, θn)

= S∗(Fθn, Fθn, Fθn−1)

≤ k max

 S∗(θn, θn, θn−1), S
∗(θn, θn, Fθn),

S∗(θn, θn, Fθn), S∗(θn−1, θn−1, Fθn−1)
1
2
[S∗(θn, θn, Fθn) + S∗(θn, θn, Fθn−1)]


≤ k max

 S∗(θn, θn, θn−1), S
∗(θn, θn, θn+1),

S∗(θn, θn, θn+1), S
∗(θn−1, θn−1, θn),

1
2
[S∗(θn, θn, θn+1) + S∗(θn, θn, θn)]


≤ k max

{
S∗(θn, θn, θn−1), S

∗(θn, θn, θn+1)
S∗(θn, θn, θn+1)

}
= k max{S∗(θn, θn, θn−1), S

∗(θn, θn, θn+1)}.(3.2)

sinceS∗(θn, θn, θn) ≤ S∗(θn, θn, θn+1). Now if

max {S∗(θn, θn, θn−1), S
∗(θn, θn, θn+1)} = S∗(θn, θn, θn+1)

for somen, since0 < k < 1 by (3.2) we have

S∗(θn+1, θn+1, θn) ≤ kS∗(θn, θn, θn+1)

< S∗(θn, θn, θn+1) = S∗(θn+1, θn+1, θn)

which is a contradiction becauseS∗(θn+1, θn+1, θn) > 0. Thus

max {S∗(θn, θn, θn−1), S
∗(θn, θn, θn+1)} = S∗(θn, θn, θn−1)

for all n. Therefore we have

S∗(θn+1, θn+1, θn) ≤ kS∗(θn, θn, θn−1)

and so

(3.3) S∗(θn+1, θn+1, θn) ≤ knS∗(θ1, θ1, θ0).

Therefore
Ss(θn+1, θn+1, θn)

= 2S∗(θn+1, θn+1, θn)− S∗(θn, θn, θn)− S∗(θn+1, θn+1, θn+1)

≤ 2S∗(θn+1, θn+1, θn)

≤ 2knS∗(θ1, θ1, θ0).

This show thatlim
n→∞

Ss(θn+1, θn+1, θn) = 0. Now we have

Ss(θm, θm, θn) ≤ 2Ss(θm, θm, θm−1) + · · ·+ 2Ss(θn+1, θn+1, θn)

≤ 4km−1S(θ1, θ1, θ0) + · · ·+ 4knS∗(θ1, θ1, θ0)

=
4kn − 4km

1− k
S∗(θ1, θ1, θ0)

≤ 4kn

1− k
S∗(θ1, θ1, θ0) −→ 0.

Then{θn} is a Cauchy sequence in theS-metric space(Ψ, Ss). Since(Ψ, S∗) is complete then
from Lemma 2.9, the sequence{θn} converges in theS-metric space(Ψ, Ss), say lim

n→∞
Ss(θn, θ, θ) =

0. Again from Lemma 2.9, we have

(3.4) S∗(θ, θ, θ) = lim
n→∞

S∗(θn, θ, θ) = lim
n,m→∞

S∗(θn, θm, θm).
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Moreover since{θn} is a Cauchy sequence in theS-metric space(Ψ, Ss), we have lim
n,m→∞

Ss(θn, θm, θm) =

0 and by (3.3) we havelim
n→∞

S∗(θn, θn, θn) = 0, thus by definitionSs we have

lim
n,m→∞

S∗(θn, θm, θm) = 0. Therefore by (3.4), we have

S∗(θ, θ, θ) = lim
n→∞

S∗(θn, θ, θ) = lim
n,m→∞

S∗(θn, θm, θm) = 0.

Now we claim thatFθ = θ. SupposeS∗(θ, Fθ, Fθ) > 0. SinceF is continuous, then for
given ε > 0, there existsδ > 0 such thatF (BS∗(θ, δ)) ⊆ BS∗(Fθ, ε). SinceS∗(θ, θ, θ) =
lim

n→∞
S∗(θn, θ, θ) = 0, then there existsN ∈ N such thatS∗(θn, θ, θ) < S∗(θ, θ, θ) + δ for all

n ≥ N . Therefore, we haveθn ∈ BS∗(θ, δ) for all n ≥ N . ThusF (θn) ∈ F (BS∗(θ, δ)) ⊆
BS∗(Fθ, ε) and soS∗(Fθn, Fθ, Fθ) < S∗(Fθ, Fθ, Fθ) + ε for all n ≥ N . This shows that
S∗(Fθ, Fθ, Fθ) = lim

n→∞
S∗(θn+1, Fθ, Fθ). Now we use the inequality (3.1) forθ = υ = ω,

then we have

S∗(Fθ, Fθ, Fθ) ≤ k max {S∗(θ, θ, θ), S∗(θ, Fθ, Fθ)} = kS∗(θ, Fθ, Fθ).

Therefore, we obtain

S∗(θ, Fθ, Fθ)

≤ S∗(θ, θn+1, θn+1) + 2S∗(θn+1, Fθ, Fθ)− 2S∗(θn+1, θn+1, θn+1)

≤ S∗(θ, θn+1, θn+1) + S∗(θn+1, Fθ, Fθ)

and lettingn →∞, we have

S∗(θ, Fθ, Fθ) ≤ lim
n→∞

S∗(θ, θn+1, θn+1) + lim
n→∞

S∗(θn+1, Fθ, Fθ)

= S∗(Fθ, Fθ, Fθ)

≤ kS∗(θ, Fθ, Fθ)

< S∗(θ, Fθ, Fθ),

which is a contradiction becauseS∗(θ, Fθ, Fθ) > 0. ThusS∗(θ, Fθ, Fθ) = 0 and soθ = Fθ.

Similarly, we can show that if instead ofυ by θ and setω = υ in Theorem 3.1 then we have
the following Corollary.

Corollary 3.2. Let (Ψ,�) be a partially ordered set and suppose that there is a partialS-
metricS∗ onΨ such that(Ψ, S∗) is a complete partialS-metric space. SupposeF : Ψ → Ψ is
a continuous and nondecreasing mapping such that

S∗(Fθ, Fθ, Fυ) ≤

k max

{
S∗(θ, θ, υ), S∗(θ, θ, Fθ), S∗(υ, υ, Fυ),
1
2
[S∗(θ, θ, Fθ) + S∗(θ, θ, Fυ)]

}
for all θ, υ ∈ Ψ with υ � θ, where0 < k < 1. If there exists anθ0 ∈ Ψ with θ0 � Fθ0, then
there existsθ ∈ Ψ such thatθ = Fθ. Moreover,S∗(θ, θ, θ) = 0.

Since everyD∗-metric is aS∗-metric. Hence we have the following Corollary.

Corollary 3.3. Let (Ψ,�) be a partially ordered set and(Ψ, D∗) be a completeD∗-metric
space. SupposeF : Ψ → Ψ is a continuous and nondecreasing mapping such that

D∗(Fθ, Fθ, Fυ) ≤

k max

{
D∗(θ, θ, υ), D∗(θ, θ, Fθ), D∗(υ, υ, Fυ),
1
2
[D∗(θ, θ, Fθ) + D∗(θ, θ, Fυ)]

}
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for all θ, υ ∈ Ψ with υ � θ, where0 < k < 1. If there exists anθ0 ∈ Ψ with θ0 � Fθ0, then
there existsθ ∈ Ψ such thatθ = Fθ. Moreover,D∗(θ, θ, θ) = 0.

Also, we have the following Corollary.

Corollary 3.4. Let (Ψ,�) be a partially ordered set and suppose that there is a partial metric
p onΨ such that(Ψ, p) is a complete partial metric space. SupposeF : Ψ → Ψ is a continuous
and nondecreasing mapping such that

p(Fθ, Fυ) ≤ k max

{
p(θ, υ), p(θ, Fθ), p(υ, Fυ),
1
2
[p(θ, Fθ) + p(θ, Fυ)]

}
for all θ, υ ∈ Ψ with υ � θ, where0 < k < 1. If there exists anθ0 ∈ Ψ with θ0 � Fθ0, then
there existsθ ∈ Ψ such thatθ = Fθ. Moreover,p(θ, θ) = 0.

Proof. By Lemma 2.2 if define

S∗(θ, υ, ω) = max{p(θ, υ), p(θ, ω), p(y, ω)},

thenS∗(θ, θ, υ) = p(θ, υ) is a partialS-metric and by Lemma 2.3 and Corollary 3.2 the proof
is complete.

In the following theorem we remove the continuity ofF . Also, the contractive condition (3.1)
do not have to satisfied forθ = υ = ω.

Theorem 3.5.Let(Ψ,�) be a partially ordered set and suppose that there is a partialS-metric
S∗ on Ψ such that(Ψ, S∗) is a complete partialS-metric space. SupposeF : Ψ → Ψ is a
nondecreasing mapping such that

S∗(Fθ, Fυ, Fω) ≤

(3.5) k max

{
S∗(θ, υ, ω), S∗(θ, θ, Fθ), S∗(υ, υ, Fυ), S∗(ω, ω, Fω),
1
2
[S∗(θ, θ, Fυ) + S∗(θ, θ, Fω)]

}
for all θ, υ, ω ∈ Ψ with ω � υ ≺ θ (that is,ω � υ � θ andυ 6= θ ), where0 < k < 1. Also, the
condition

(3.6)

{
If {θn} ⊂ Ψ is an increasing sequence
with θn → θ in Ψ, thenθn ≺ θ for all n

holds. If there exists anθ0 ∈ Ψ with θ0 � Fθ0, then there existsθ ∈ Ψ such thatθ = Fθ.
Moreover,S∗(θ, θ, θ) = 0.

Proof. As in the proof of Theorem 3.1, we can construct a sequence{θn} in Ψ by θn = Fθn−1

for n = 1, 2, . . . Also we can assume that the consequtive terms of{θn} are different. Otherwise
we are finished. Therefore we have

θ0 ≺ θ1 ≺ θ2 ≺ · · · ≺ θn ≺ θn+1 ≺ · · · .

Again, as in the proof of Theorem 3.1, we can show that{θn} is a Cauchy sequence in the
S-metric space(Ψ, Ss) and therefore there existsθ ∈ Ψ such that

S∗(θ, θ, θ) = lim
n→∞

S∗(θn, θn, θ) = lim
n,m→∞

S∗(θn, θn, θm)

= lim
n→∞

S∗(θn, θn, θm) = 0.
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Now we claim thatFθ = x. SupposeS∗(θ, θ, Fθ) > 0. Since the condition (3.6) is satisfied,
then we can use the (3.5) forθ = υ = θn andυ = θ. Therefore, we obtain

S∗(θn+1, θn+1, Fθ) = S∗(Fθn, Fθn, Fθ)

≤ k max

 S∗(θn, θn, θ), S
∗(θn, θn, Fθn),

S∗(θn, θn, Fθn), S∗(θ, θ, Fθ),
1
2
[S∗(θn, θn, Fθn) + S∗(θn, θn, Fθ)]


≤ k max

 S∗(θn, θn, θ), S
∗(θn, θn, θn+1),

S∗(θn, θn, θn+1), S
∗(θ, θ, Fθ),

1
2
[S∗(θn, θn, θn+1) + S∗(θn, θn, Fθ)]

 .

Lettingn →∞, we have

S∗(θ, θ, Fθ) = lim
n→∞

S∗(θn+1, θn+1, Fθ)

≤ k max


lim

n→∞
S∗(θn, θn, θ), lim

n→∞
S∗(θn, θn, θn+1),

lim
n→∞

S∗(θn, θn, θn+1), lim
n→∞

S∗(θ, θ, Fθ),
1
2
[ lim
n→∞

S∗(θn, θn, θn+1) + lim
n→∞

S∗(θn, θn, Fθ)]


≤ kS∗(θ, θ, Fθ)

< S∗(θ, θ, Fθ),

which is a contradiction. ThusS∗(θ, θ, Fθ) = 0 and soθ = Fθ.

Similarly we can show that if instead ofυ by Ψ and setω = υ in Theorem 3.5 then we have
the following Corollary.

Corollary 3.6. Let (Ψ,�) a partially ordered set and suppose that there is a partialS-metric
S∗ on Ψ such that(Ψ, S∗) is a complete partialS-metric space. SupposeF : Ψ → Ψ is a
nondecreasing mapping such that

S∗(Fθ, Fθ, Fυ) ≤ k max

{
S∗(θ, θ, υ), S∗(θ, θ, Fθ), S∗(υ, υ, Fυ),
1
2
[S∗(θ, θ, Fθ) + S∗(θ, θ, Fυ)]

}
for all θ, υ ∈ Ψ with υ ≺ θ (that is,υ � θ andυ 6= θ ), where0 < k < 1. Also, the condition{

If {θn} ⊂ Ψ is a increasing sequence
with θn → θ in Ψ, thenθn ≺ θ for all n

hold. If there exists anθ0 ∈ Ψ with θ0 � Fθ0, then there existsθ ∈ Ψ such thatθ = Fθ.
Moreover,S∗(θ, θ, θ) = 0.

Also, we have the following Corollary.

Corollary 3.7. Let(Ψ,�) a partially ordered set and suppose that there is a partial metricp on
Ψ such that(Ψ, p) is a complete partial metric space. SupposeF : Ψ → Ψ is a nondecreasing
mapping such that

p(Fθ, Fυ) ≤ k max

{
p(θ, υ), p(θ, Fθ), p(υ, Fυ),
1
2
[p(θ, Fθ) + p(θ, Fυ)]

}
for all θ, υ ∈ Ψ with υ ≺ θ (that is,υ � θ andυ 6= θ ), where0 < k < 1. Also, the condition{

If {θn} ⊂ Ψ is a increasing sequence
with θn → θ in Ψ, thenθn ≺ θ for all n

hold. If there exists anθ0 ∈ Ψ with θ0 � Fθ0, then there existsθ ∈ Ψ such thatθ = Fθ.
Moreover,p(θ, θ) = 0.
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Proof. By Lemma 2.2 it is enough define

S∗(θ, υ, ω) = max{p(θ, υ), p(θ, ω), p(υ, ω)},
thenS∗(θ, θ, υ) = p(θ, υ) is a partialS-metric. Hence by Lemma 2.3 and Corollary 3.7 the
proof is complete.

Example 3.1. Let Ψ = [0,∞) andS∗(θ, υ, ω) = max{θ, υ, υ}, then it is clear that(Ψ, S∗) is
a complete partialS-metric space. We can define a partial order onΨ as follows:

θ � υ ⇔ (θ = υ) or (θ, υ ∈ [0, 1] with θ ≤ υ).

LetF : Ψ → Ψ,

Fθ =


θ2

1+θ
, θ ∈ [0, 1]

1
2
θ , θ ∈ (1,∞)

andF is nondecreasing with respect to� and forυ ≺ Ψ andk ≥ 1
2
, we have

S∗(Fθ, Fθ, Fυ) = max{ θ2

1 + θ
,

υ2

1 + υ
}

=
θ2

1 + θ
≤ 1

2
θ =

1

2
S∗(θ, θ, υ)

≤ k(S∗(θ, θ, υ))

≤ k max

{
S∗(θ, θ, υ), S∗(θ, θ, Fθ), S∗(υ, υ, Fυ),
1
2
[S∗(θ, θ, Fθ) + S∗(θ, θ, Fυ)]

}
,

that is, the condition(3.5) of Theorem3.5 is satisfied. Also, it is clear that the condition(3.6)
is satisfied and forθ0 = 0, we haveθ0 � Fθ0. Therefore all conditions of Theorem3.5 are
satisfied and soF has a fixed point inΨ.
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