


Paper's Title:
Ostrowski Type Inequalities for Lebesgue Integral: a Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
The main aim of this survey is to present recent results concerning Ostrowski type inequalities for the Lebesgue integral of various classes of complex and realvalued functions. The survey is intended for use by both researchers in various fields of Classical and Modern Analysis and Mathematical Inequalities and their Applications, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Paper's Title:
An Efficient Modification of Differential Transform Method for Solving Integral and Integrodifferential Equations
Author(s):
S. AlAhmad, Ibrahim Mohammed Sulaiman^{*}, and M. Mamat
Faculty of Informatics and Computing,
Universiti Sultan Zainal Abidin,
Terengganu, Besut Campus, 22200,
Malaysia.
Email: Alahmad.shadi@yahoo.com,
^{*}sulaimanib@unisza.edu.my,
must@unisza.edu.my
Abstract:
In this paper, classes of integral and integrodifferential equations are solved using a modified differential transform method. This proposed technique is based on differential transform method (DTM), Laplace transform (LT) procedure and Pad\'{e} approximants (PA). The proposed method which gives a good approximation for the true solution in a large region is referred to modified differential transform method (MDTM). An algorithm was developed to illustrate the flow of the proposed method. Some numerical problems are presented to check the applicability of the proposed scheme and the obtained results from the computations are compared with other existing methods to illustrates its efficiency. Numerical results have shown that the proposed MDTM method is promising compared to other existing methods for solving integral and integrodifferential equations.
Paper's Title:
Antiderivatives and Integrals Involving Incomplete Beta Functions with Applications
Author(s):
R. AlAhmad^{1,2} and H. Almefleh^{1}
Mathematics Department,
Yarmouk University,
Irbid 21163,
Jordan.
Email: rami_thenat@yu.edu.jo
Faculty of Engineering,
Higher Colleges of Technology,
Ras Alkhaimah,
UAE.
Abstract:
In this paper, we prove that incomplete beta functions are antiderivatives of several products and powers of trigonometric functions, we give formulas for antiderivatives for products and powers of trigonometric functions in term of incomplete beta functions, and we evaluate integrals involving trigonometric functions using incomplete beta functions. Also, we extend some properties of the beta functions to the incomplete beta functions. As an application for the above results, we find the moments for certain probability distributions.
Paper's Title:
Solving NonAutonomous Nonlinear Systems of Ordinary Differential Equations Using MultiStage Differential Transform Method
Author(s):
K. A. Ahmad, Z. Zainuddin, F. A. Abdullah
School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM Penang
Malaysia.
Email: abumohmmadkh@hotmail.com
zarita@usm.my
farahaini@usm.my
Abstract:
Differential equations are basic tools to describe a wide variety of phenomena in nature such as, electrostatics, physics, chemistry, economics, etc. In this paper, a technique is developed to solve nonlinear and linear systems of ordinary differential equations based on the standard Differential Transform Method (DTM) and Multistage Differential Transform Method (MsDTM). Comparative numerical results that we are obtained by MsDTM and RungeKutta method are proposed. The numerical results showed that the MsDTM gives more accurate approximation as compared to the RungeKutta numerical method for the solutions of nonlinear and linear systems of ordinary differential equations
Paper's Title:
Composite VariationalLike Inequalities Given By Weakly Relaxed ζSemiPseudomonotone MultiValued Mapping
Author(s):
Syed Shakaib Irfan, Iqbal Ahmad, Zubair Khan and Preeti Shukla
College of Engineering, Qassim University
Buraidah, AlQassim,
Saudi Arabia.
Email: shakaib@qec.edu.sa
College of Engineering, Qassim University
Buraidah, AlQassim,
Saudi Arabia.
Email: iqbal@qec.edu.sa
Department of Mathematics,
Integral University Lucknow,
India.
Email: zkhan@iul.ac.in
Department of Mathematics,
Integral University Lucknow,
India.
Email: shuklapreeti1991@gmail.com
Abstract:
In this article, we introduce a composite variationallike inequalities with weakly relaxed ζpseudomonotone multivalued maping in reflexive Banach spaces. We obtain existence of solutions to the composite variationallike inequalities with weakly relaxed ζpseudomon otone multivalued maps in reflexive Banach spaces by using KKM theorem. We have also checked the solvability of the composite variationallike inequalities with weakly relaxed ζsemipseudomonotone multivalued maps in arbitrary Banach spaces using KakutaniFanGlicksberg fixed point theorem.
Paper's Title:
Some Approximation for the linear combinations of modified Beta operators
Author(s):
Naokant Deo
Department of Applied Mathematics
Delhi College of Engineering
Bawana Road, Delhi  110042,
India.
dr_naokant_deo@yahoo.com
Abstract:
In this paper, we propose a sequence of new positive linear operators β_{n} to study the ordinary approximation of unbounded functions by using some properties of the Steklov means.
Paper's Title:
Some Generalized Difference Sequence Spaces Defined by Orlicz Functions
Author(s):
Ramzi S. N. Alsaedi and Ahmad H. A. Bataineh
Department of Mathematics, King Abdul Aziz University,
Jeddah P.O.Box 80203,
Saudia Arabia
ramzialsaedi@yahoo.co.uk
Department of Mathematics, Al alBayt University,
Mafraq 25113,
Jordan
ahabf2003@yahoo.ca
Abstract:
In this paper, we define the sequence spaces: [V,M,p,u,Δ ],[V,M,p,u,Δ]_{0} and [V,M,p,u,Δ]_{∞}, where for any sequence x=(x_{n}), the difference sequence Δx is given by Δx=(Δx_{n}) = (x_{n}x_{n1}) . We also study some properties and theorems of these spaces. These are generalizations of those defined and studied by Savas and Savas and some others before.
Paper's Title:
Inequalities for Discrete FDivergence Measures: A Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
In this paper we survey some recent results obtained by the author in providing various bounds for the celebrated fdivergence measure for various classes of functions f. Several techniques including inequalities of Jensen and Slater types for convex functions are employed. Bounds in terms of KullbackLeibler Distance, Hellinger Discrimination and Varation distance are provided. Approximations of the fdivergence measure by the use of the celebrated Ostrowski and Trapezoid inequalities are obtained. More accurate approximation formulae that make use of Taylor's expansion with integral remainder are also surveyed. A comprehensive list of recent papers by several authors related this important concept in information theory is also included as an appendix to the main text.
Paper's Title:
Integrating Factors and First Integrals of a Class of Third Order Differential Equations
Author(s):
Mohammadkheer AlJararha
Department of Mathematics,
Yarmouk University,
Irbid 21163,
Jordan.
Email: mohammad.ja@yu.edu.jo
Abstract:
The principle of finding an integrating factor for a none exact differential equations is extended to a class of third order differential equations. If the third order equation is not exact, under certain conditions, an integrating factor exists which transforms it to an exact one. Hence, it can be reduced into a second order differential equation. In this paper, we give explicit forms for certain integrating factors of a class of the third order differential equations.
Paper's Title:
On Finding Integrating Factors and First Integrals for a Class of Higher Order Differential Equations
Author(s):
Mohammadkheer M. AlJararha
Department of Mathematics,
Yarmouk University,
Irbid, 21163,
Jordan.
Email: mohammad.ja@yu.edu.jo
Abstract:
If the $nth$ order differential equation is not exact, under certain
conditions, an integrating factor exists which transforms the differential
equation into an exact one. Thus, the order of differential equation can be
reduced to the lower order. In this paper, we present a technique for finding
integrating factors of the following class of differential equations:
Here, the functions F_{0},F_{1},F_{2},
…,F_{n} are assumed to be continuous
functions with their first partial derivatives on some simply connected domain
Ω ⊂ R^{n+1}.
We also presented some demonstrative examples
Paper's Title:
Formulation of Approximate Mathematical Model for Incoming Water to Some Dams on Tigris and Euphrates Rivers Using Spline Function
Author(s):
Nadia M. J. Ibrahem, Heba A. Abd AlRazak, and Muna M. Mustafa
Mathematics Department,
College of Sciences for Women,
University of Baghdad, Baghdad,
Iraq.
Email:
Nadiamj_math@csw.uobaghdad.edu.iq
Abstract:
In this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and AlHindya.
Paper's Title:
Coincidences and Fixed Points of Hybrid Maps in Symmetric Spaces
Author(s):
S. L. Singh and Bhagwati Prasad
Vedic MRI, 21 Govind Nagar,
Rishikesh 249201
India
vedicmri@gmail.com
Department of Mathematics, Gurukula Kangri University,
Hardwar 249404,
India
Abstract:
The purpose of this paper is to obtain a new coincidence theorem for a singlevalued and two multivalued operators in symmetric spaces. We derive fixed point theorems and discuss some special cases and applications.
Paper's Title:
Positive Solutions to a System of Boundary Value Problems for HigherDimensional Dynamic Equations on Time Scales
Author(s):
I. Y. Karaca
Department of Mathematics,
Ege University,
35100 Bornova, Izmir,
Turkey
URL:
http://ege.edu.tr
Abstract:
In this paper, we consider the system of boundary value problems for higherdimensional dynamic equations on time scales. We establish criteria for the existence of at least one or two positive solutions. We shall also obtain criteria which lead to nonexistence of positive solutions. Examples applying our results are also given.
Paper's Title:
Hyponormal and KQuasiHyponormal Operators On SemiHilbertian Spaces
Author(s):
Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali
Mathematics Department,
College of Science,
Aljouf University,
Aljouf 2014,
Saudi Arabia.
Email:
sididahmed@ju.edu.sa
Mathematics Department, Faculty of
Science,
Hassiba Benbouali, University of Chlef,
B.P. 151 Hay Essalem, Chlef 02000,
Algeria.
Email:
benali4848@gmail.com
Abstract:
Let H be a Hilbert space and let A be a positive bounded operator on H. The semiinner product < uv>_{A}:=<Auv>, u,v ∈ H induces a seminorm  ._{A} on H. This makes H into a semiHilbertian space. In this paper we introduce the notions of hyponormalities and kquasihyponormalities for operators on semi Hilbertian space (H,._{A}), based on the works that studied normal, isometry, unitary and partial isometries operators in these spaces. Also, we generalize some results which are already known for hyponormal and quasihyponormal operators. An operator T ∈ B_{A} (H) is said to be (A, k)quasihyponormal if
Search and serve lasted 1 second(s).