


Paper's Title:
An Integration Technique for Evaluating Quadratic Harmonic Sums
Author(s):
J. M. Campbell and K.W. Chen
Department of Mathematics and Statistics,
York University, 4700 Keele St, Toronto,
ON M3J 1P3,
Canada.
Email: jmaxwellcampbell@gmail.com
Department of Mathematics, University of Taipei,
No. 1, AiGuo West Road,
Taipei 10048, Taiwan.
Email: kwchen@uTaipei.edu.tw
URL:
https://math.utaipei.edu.tw/p/412108222.php
Abstract:
The modified Abel lemma on summation by parts has been applied in many ways recently to determine closedform evaluations for infinite series involving generalized harmonic numbers with an upper parameter of two. We build upon such results using an integration technique that we apply to ``convert'' a given evaluation for such a series into an evaluation for a corresponding series involving squared harmonic numbers.
Paper's Title:
Cubic Alternating Harmonic Number Sums
Author(s):
Anthony Sofo
Victoria University,
College of Engineering and Science,
Melbourne City,
Australia.
Email:
Anthony.Sofo@vu.edu.au
Abstract:
We develop new closed form representations of sums of cubic alternating harmonic numbers and reciprocal binomial coefficients. We also identify a new integral representation for the ζ (4) constant.
Paper's Title:
Ostrowski Type Inequalities for Lebesgue Integral: a Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
The main aim of this survey is to present recent results concerning Ostrowski type inequalities for the Lebesgue integral of various classes of complex and realvalued functions. The survey is intended for use by both researchers in various fields of Classical and Modern Analysis and Mathematical Inequalities and their Applications, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Paper's Title:
Analysis of a Frictional Contact Problem for Viscoelastic Piezoelectric Materials
Author(s):
Meziane Said Ameur, Tedjani Hadj Ammar and Laid Maiza
Departement of Mathematics,
El Oued University,
P.O. Box 789, 39000 El Oued,
Algeria.
Email:
saidameurmeziane@univeloued.dz
Departement of Mathematics,
El Oued University,
P.O. Box 789, 39000 El Oued,
Algeria.
Email:
hadjammartedjani@univeloued.dz
Department of Mathematics,
Kasdi Merbah University,
30000 Ouargla,
Algeria.
Email: maiza.laid@univouargla.dz
Abstract:
In this paper, we consider a mathematical model that describes the quasistatic process of contact between two thermoelectroviscoelastic bodies with damage and adhesion. The damage of the materials caused by elastic deformations. The contact is frictional and modeled with a normal compliance condition involving adhesion effect of contact surfaces. Evolution of the bonding field is described by a first order differential equation. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.
Paper's Title:
Inequalities for Discrete FDivergence Measures: A Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
In this paper we survey some recent results obtained by the author in providing various bounds for the celebrated fdivergence measure for various classes of functions f. Several techniques including inequalities of Jensen and Slater types for convex functions are employed. Bounds in terms of KullbackLeibler Distance, Hellinger Discrimination and Varation distance are provided. Approximations of the fdivergence measure by the use of the celebrated Ostrowski and Trapezoid inequalities are obtained. More accurate approximation formulae that make use of Taylor's expansion with integral remainder are also surveyed. A comprehensive list of recent papers by several authors related this important concept in information theory is also included as an appendix to the main text.
Paper's Title:
Analysis of a Dynamic Elastoviscoplastic Frictionless Antiplan Contact Problem with Normal Compliance
Author(s):
A. Ourahmoun^{1}, B. Bouderah^{2}, T. Serrar^{3}
^{1,2}Applied Mathematics
Laboratory,
M'sila University, 28000,
Algeria.
Email: ourahmounabbes@yahoo.fr
^{3}Applied Mathematics
Laboratory,
Setif 1 University, 19000,
Algeria.
Abstract:
We consider a mathematical model which describes the dynamic evolution of a thermo elasto viscoplastic contact problem between a body and a rigid foundation. The mechanical and thermal properties of the obstacle coating material near its surface. A variational formulation of this dynamic contact phenomenon is derived in the context of general models of thermo elasto viscoplastic materials. The displacements and temperatures of the bodies in contact are governed by the coupled system consisting of a variational inequality and a parabolic differential equation. The proof is based on a classical existence and uniqueness result on parabolic inequalities,differential equations and fixed point arguments.
Paper's Title:
Contact With Adhesion between a Deformable Body and a Foundation
Author(s):
B. Teniou and M. Sofonea
Laboratoire de Mathematiques Appliquées et Modélisation,
Université Mentouri, Constantine 25000,
Algeria
tenioubou2@yahoo.fr
Laboratoire de Mathématiques et Physiques pour les Systémes,
Univesité de Perpignan,
France.
sofonea@univperp.fr
Abstract:
The aim of this work is study a dynamic contact problem between a deformable body and a foundation where the deformations are supposed to be small. The contact is with adhesion and normal compliance. The behavior of this body is modeled by a nonlinear elasticviscoplastic law. The evolution of bonding field is described by a nonlinear differential equation. We derive a variational formulation of the contact problem and we prove the existence and uniqueness of its solution. The proof is based on the construction of three intermediate problems and then we construct a contraction mapping whose unique fixed point will be the weak solution of the mechanical problem.
Paper's Title:
Fejértype Inequalities
Author(s):
Nicuşor Minculete and FlaviaCorina Mitroi
"Dimitrie Cantemir" University,
107 Bisericii Române Street, Braşov, 500068,
România
minculeten@yahoo.com
University of Craiova, Department of Mathematics,
Street A. I. Cuza
13, Craiova, RO200585,
Romania
fcmitroi@yahoo.com
Abstract:
The aim of this paper is to present some new Fejértype results for convex functions. Improvements of Young's inequality (the arithmeticgeometric mean inequality) and other applications to special means are pointed as well.
Paper's Title:
A Dynamic Contact Problem for an Electro Viscoelastic Body
Author(s):
Denche M. and Ait Kaki L.
Laboratoire Equations Differentielles,
Departement de Mathematiques,
Universite Constantine 1,
Algeria.
Ecole Normale Superieure,
Departement des Sciences Exactes et Informatique,
Plateau Mansourah, Constantine.
Algeria.
Email:
m.denche@umc.edu.dz
leilaitkaki@yahoo.fr
Abstract:
We consider a dynamic problem which describes a contact between a piezoelectric body and a conductive foundation. The frictionless contact is modelled with the normal compliance, the electric conditions are supposed almost perfect. We prove the existence of a unique weak solution for almost perfect electric contact.
Paper's Title:
Weighted Generalization of the Trapezoidal Rule via Fink Identity
Author(s):
S. Kovač, J. Pečarić and A. Vukelić
Faculty of Geotechnical Engineering, University of Zagreb,
Hallerova aleja 7, 42000 Varaždin,
Croatia.
sanja.kovac@gtfvz.hr
Faculty of Textile Technology, University of Zagreb,
Pierottijeva 6, 10000 Zagreb,
Croatia.
pecaric@hazu.hr
Faculty of Food Technology and Biotechnology, Mathematics department, University of Zagreb,
Pierottijeva 6, 10000 Zagreb,
Croatia.
avukelic@pbf.hr
Abstract:
The weighted Fink identity is given and used to obtain generalized weighted trapezoidal formula for ntime differentiable functions. Also, an error estimate is obtained for this formula.
Paper's Title:
Some Inequalities for Gramian Normal Operators and for Gramian SelfAdjoint Operators in PseudoHilbert Spaces
Author(s):
Loredana Ciurdariu
Department of Mathematics,"Politehnica" University of Timisoara,
Pta. Victoriei, No.2, 300006Timisoara,
ROMANIA
cloredana43@yahoo.com.
Abstract:
Several inequalities for gramian normal operators and for gramian selfadjoint operators in pseudoHilbert spaces are presented.
Paper's Title:
On Reformations of 2Hilbert Spaces
Author(s):
M. Eshaghi Gordji, A. Divandari, M. R. Safi and Y. J. Cho
Department of Mathematics, Semnan
University,
P.O. Box 35195363, Semnan,
Iran
meshaghi@semnan.ac.ir, madjid.eshaghi@gmail.com
Department of Mathematics, Semnan
University,
Iran
Department of Mathematics, Semnan
University,
Iran
safi@semnan.ac.ir, SafiMohammadReza@yahoo.com
Department of Mathematics Education and
the RINS,
Gyeongsang National University
Chinju 660701,
Korea
Abstract:
In this paper, first, we introduce the new concept of (complex) 2Hilbert spaces, that is, we define the concept of 2inner product spaces with a complex valued 2inner product by using the 2norm. Next, we prove some theorems on Schwartz's inequality, the polarization identity, the parallelogram laws and related important properties. Finally, we give some open problems related to 2Hilbert spaces.
Search and serve lasted 0 second(s).