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ABSTRACT. In this paper, first, we introduce the new concept of (complex)2–Hilbert spaces,
that is, we define the concept of2–inner product spaces with a complex valued2–inner product
by using the2–norm. Next, we prove some theorems on Schwartz’s inequality, the polarization
identity, the parallelogram laws and related important properties. Finally, we give some open
problems related to 2–Hilbert spaces.

Key words and phrases:2–inner product,2–norm,x–linear function, linear 2–function,x–orthogonal,2–Hilbert space.

2000Mathematics Subject Classification.Primary 46C05, 46C99. Secondary 26D15, 26D10.

ISSN (electronic): 1449-5910

c© 2013 Austral Internet Publishing. All rights reserved.

The fourth author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded

by the Ministry of Education, Science and Technology (Grant No. NRF-2012-0008170).

http://ajmaa.org/
Email: Majid Eshaghi
Email: Ali Divandari 
Email: MohammadReza Safi 
Email: Yeol Je Cho 
http://www.ams.org/msc/


2 M. ESHAGHI GORDJI, A. DIVANDARI , M. R. SAFI AND Y. J. CHO

1. I NTRODUCTION

The concepts of2-metric spaces and linear2–normed spaces were first introduced by Gähler
in 1963 and 1964 [11, 12]. Since then, many authors, Freese et al., Gähler, Cho et al., Dimin-
nie et al., Gunawan et al. have developed extensively topological and geometric structures
of 2–normed spaces,2–metric spaces, semi–2–normed spaces, semi–2–metric spaces, ultra–
2–normed spaces, non–Archimedean2–normed spaces and the relations among2–norms, bi–
vectors and usual norms, and others (see [1, 2, 3, 4, 7, 8, 9, 13, 14, 15, 18, 19, 20, 21, 22, 23]).
Particulary, in [8], Freese and Cho showed that a2–metric space in which unique “lines" exist
and expressed entirely in terms of the2–metric is a linear2–normed space.

A linear 2–normed space is a pair(H, ‖·, ·‖), whereH is a a complex vector space of a
dimension greater than one and‖·, ·‖ is a real-valued mapping onH×H satisfying the following
conditions: for alla, b ∈ H andα ∈ C,

(2N1) ‖αa, b‖ = |α|‖a, b‖;
(2N2) ‖b, a‖ = ‖a, b‖;
(2N3) ‖a, b‖ = 0 if and only if a andb are linearly dependent;
(2N4) ‖a1 + a2, b‖ ≤ ‖a1, b‖+ ‖a2, b‖.
We can consider a2–norm onH defined by an inner product〈·, ·〉 onH as follows:

‖a, b‖ :=

∣∣∣∣ 〈a, a〉 〈a, b〉
〈b, a〉 〈b, b〉

∣∣∣∣ 1
2

for all a, b ∈ H. Geometrically, a2–norm function generalizes the concept of the parallelogram
law spanned by the vectorsa andb, which may be given explicitly by the formula‖a, b‖ =
|a1b2 − a2b1|, wherea = (a1, a2), b = (b1, b2) ∈ R2 (see [14]). Observe that, in a linear
2–normed space(H, ‖·, ·‖),

‖a, b‖ = ‖a, b + αa‖
for all a, b ∈ H andα ∈ C.

The properties of linear2–normed spaces have been extensively studied by many authors, but
many properties of them are almost same to the properties of usual normed spaces. The same
properties also occur in2–inner product spaces, which were introduced by Diminnie et al. [6].

A pair (H, (·, ·|·) is a2–inner product space, where(·, ·|·) is a real-valued function defined on
H ×H ×H satisfying the following conditions:

(2I1) (a, a|b) = (b, b|a) and(a, b|d) = (b, a|d);
(2I2) (a, a|b) ≥ 0 and(a, a|b) = 0 if and only if a andb are linearly dependent;
(2I3) (αa1 + a2, b|d) = α(a1, b|d) + (a2, b|d) for all a, b, d ∈ H andα ∈ C.

Many authors have obtained important results on orthogonality in linear2–normed spaces
and2–inner product spaces (see, for example, [1, 14, 15, 16, 17, 24]). But it seems that there
exists a fault in the definition of a2–inner product space. The most important defect is the
following:

We can not define2–Hilbert spaces by the above definition.

As we know, theory of Hilbert spaces plays a central role in many areas of mathematics,
not only in analysis, but also including (differential) geometry, group theory, stochastic and
even number theory. The earliest Hilbert spaces were studied from this point of view in the
first decade of the 20th century by Hilbert, Schmidt and Riesz. They are indispensable tools
in the theories of partial differential equations, quantum mechanics, Fourier analysis (which
includes applications to signal processing and heat transfer) and Ergodic Theory which forms
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ON REFORMATIONS OF2–HILBERT SPACES 3

the mathematical underpinning of the study of thermodynamics. Today, the most spectacu-
lar new applications of theory of Hilbert spaces are given by Noncommutative Geometry [5],
where the motivation from pure mathematics is merged with the physical input from quantum
mechanics. Consequently, this is an important field of research in pure mathematics as well as
in mathematical physics.

In this paper, we introduce the best generalized definition of a2–inner product space which
includes all the previous definitions and the geometric approach to the concept of a more ap-
propriate. Then we define newly the concept of2–Hilbert spaces and give several important
properties.

In the near future, we hope that the notion of2–Hilbert spaces provides the new mathemat-
ical foundation of physics (specially in quantum theory) and engineering, typically as infinite–
dimensional function spaces.

2. New definition of 2–inner product spaces

Definition 2.1. A complex vector spaceH is called a2–inner product space if there exists a
complex-valued function〈(·, ·), (·, ·)〉 onH2 ×H2 such that, for alla, b, c, d ∈ H andα ∈ C,

(I1) 〈(a, b), (c, d)〉 = 〈(c, d), (a, b)〉;
(I2) If a andb are linearly independent inH, then〈(a, b), (a, b)〉 > 0;
(I3) 〈(a, b), (c, d)〉 = −〈(b, a), (c, d)〉;
(I4) 〈(αa + ã, b), (c, d)〉 = α〈(a, b), (c, d)〉+ 〈(ã, b), (c, d)〉.

Some immediate consequences of these axioms are as follows: for alla, b, c, d, b̃, c̃, d̃ ∈ H
andα, β ∈ C,

(P1) 〈(0, b), (c, d)〉 = 〈(b, αb), (c, d)〉0;
(P1) 〈(a, αb + b̃), (c, d)〉 = α〈(a, b), (c, d)〉+ 〈(a, b̃), (c, d)〉;
(P1) 〈(a, b), (βc + c̃, d)〉 = β〈(a, b), (c, d)〉+ 〈(a, b), (c̃, d)〉;
(P1) 〈(a, b), (c, βd + d̃)〉 = β〈(a, b), (c, d)〉+ 〈(a, b), (c, d̃)〉;
(P1) 〈(a, b), (c, d)〉 = 〈(b, a), (d, c)〉;
(P1) 〈(a, b), (a, b)〉 = 0 ⇐⇒ a, b are linearly dependent;
(P1) 〈(a, b), (a, b)〉 ≥ 0.

Theorem 2.2. (The Schwartz Inequality) LetH be a2–inner product space. Then we have
the following:

|〈(a, b), (c, b)〉|2 ≤ 〈(a, b), (a, b)〉〈(c, b), (c, b)〉

for all a, b, c ∈ H.

Proof. For any complex numberλ, we have

0 ≤ 〈(λa + c, b), (λa + c, b)〉
= 〈(λa, b), (λa + c, b)〉+ 〈(c, b), (λa + c, b)〉
= λλ̄〈(a, b), (a, b)〉+ λ〈(a, b), (c, b)〉+ λ̄〈(c, b), (a, b)〉+ 〈(c, b), (c, b)〉.

Let a andb are linearly independent. Then, by putting

λ = −〈(c, b), (a, b)〉
〈(a, b), (a, b)〉
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in the above inequality, we have

|〈(a, b), (c, b)〉|2

〈(a, b), (a, b)〉
− 〈(c, b), (a, b)〉〈(a, b), (c, b)〉

〈(a, b), (a, b)〉

− 〈(a, b), (c, b)〉 〈(c, b), (a, b)〉
〈(a, b), (a, b)〉

+ 〈(c, b), (c, b)〉 ≥ 0.

Therefore, we have

|〈(a, b), (c, b)〉|2 ≤ 〈(a, b), (a, b)〉 〈(c, b), (c, b)〉.
This completes the proof.

Theorem 2.3. Let H be a2–inner product space. Then the real-valued function‖·, ·‖ :
H ×H → R defined by

‖a, b‖ := 〈(a, b), (a, b)〉
1
2

is a2–norm onH.

Proof. Now, we verify that‖·, ·‖ satisfies the following properties of2–norms:
(1) (I4) and (P3) show that‖αa, b‖ = 〈(αa, b), (αa, b)〉 1

2 = |α|‖a, b‖ for all a, b ∈ H and all
α ∈ C.

(2) It follows from (P5) that‖b, a‖ = 〈(b, a), (b, a)〉 1
2 = ‖a, b‖ for all a, b ∈ H.

(3) (P6) follows that‖a, b‖ = 0 if and only if a andb are linearly dependent for alla, b ∈ H.
(4) By the Schwartz inequality, we have

‖a + ã, b‖2 = 〈(a + ã, b), (a + ã, b)〉
= 〈(a, b), (a, b)〉+ 〈(ã, b), (ã, b)〉+ 〈(a, b), (ã, b)〉+ 〈(ã, b), (a, b)〉
≤ 〈(a, b), (a, b)〉+ 〈(ã, b), (ã, b)〉+ 2|〈(a, b), (ã, b)〉|
≤ ‖a, b‖+ ‖ã, b‖+ 2‖a, b‖‖ã, b‖
≤ (‖a, b‖+ ‖ã, b‖)2

for all a, ã, b ∈ H. This shows thatH is a linear2–normed space. This completes the proof.

Example 2.4.Let H be a complex vector space with inner product〈·, ·〉. We define

〈(a, b), (c, d)〉 :=

∣∣∣∣ 〈a, c〉 〈a, d〉
〈b, c〉 〈b, d〉

∣∣∣∣
for all a, b, c, d ∈ H. Then we have the following:

(1) 〈(a, b), (c, d)〉 =

∣∣∣∣ 〈a, c〉 〈a, d〉
〈b, c〉 〈b, d〉

∣∣∣∣ =

∣∣∣∣ 〈c, a〉 〈d, a〉
〈c, b〉 〈d, b〉

∣∣∣∣ = 〈(c, d), (a, b))〉.

(2) If a andb be linearly independent, then‖a‖‖b‖ > |〈a, b〉| and so we have

〈(a, b), (a, b)〉 =

∣∣∣∣ 〈a, a〉 〈a, b〉
〈b, a〉 〈b, b〉

∣∣∣∣ > 0.

(3) −〈(b, a), (c, d)〉 = −
∣∣∣∣ 〈b, c〉 〈b, d〉
〈a, c〉 〈a, d〉

∣∣∣∣ = 〈(a, b), (c, d)〉.

(4) Similarly, we have
〈(αa, b), (c, d)〉 = α〈(a, b), (c, d)〉

and
〈(a + ã, b), (c, d)〉 = 〈(a, b), (c, d)〉+ 〈(ã, b), (c, d)〉

for all a, b, c, d, ã,∈ H andα ∈ C. Therefore, it follows thatH is a2–inner product space.
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Consider a spaceF of well–defined complex–valued functions over an interval[a, b]. Then a
2–inner product is given by

〈(f, g), (h, k)〉 :=
1

(b− a)2

∣∣∣∣∣∣
∫ b

a
fh̄ dt

∫ b

a
fk̄ dt∫ b

a
gh̄ dt

∫ b

a
gk̄ dt

∣∣∣∣∣∣
for all f, g, h, k ∈ F.

3. Main results

We know that every2–inner product is a linear2–normed space with respect to the2–norm
defined in Theorem 2.3. Is the converse true? That is, when a2–norm is derived from a2–inner
product in this way? The answer is given by the following theorems:

Lemma 3.1. (Polarization identity) LetH be a2–inner product space. Then we have

〈(a, b), (c, d)〉

=
1

8
[‖a + c, b + d‖2 + ‖a− c, b− d‖2 − ‖a + ic, b + id‖2 − ‖a− ic, b− id‖2]

+
1

8
i[‖a + ic, b + d‖2 + ‖a− ic, b + d‖2 − ‖a + c, b− id‖2 − ‖a− c, b + id‖2]

for all a, c, b, d ∈ H.

Proof. We have

‖a + c, b + d‖2 + ‖a− c, b− d‖2

= 2[‖a, b‖2 + ‖c, b‖2 + ‖a, d‖2 + ‖c, d‖2] + 〈(a, b), (c, d)〉+ 〈(c, d), (a, b)〉
+ 〈(c, b), (a, d)〉+ 〈(a, d), (c, b)〉,

‖a + ic, b + id‖2 + ‖a− ic, b− id‖2

= 2[‖a, b‖2 + ‖c, b‖2 + ‖a, d‖2 + ‖c, d‖2]− 〈(a, b), (c, d)〉 − 〈(c, d), (a, b)〉
+ 〈(c, b), (a, d)〉+ 〈(a, d), (c, b)〉

for all a, c, b, d ∈ H and so

Re(〈(a, b), (c, d)〉)=1

8
[‖a + c, b + d‖2 + ‖a− c, b− d‖2 −‖a + ic, b + id‖2 −‖a− ic, b− id‖2]

for all a, c, b, d ∈ H.
On the other hand, we have

〈(a, b), (c, d)〉 = Re(〈(a, b), (c, d)〉) + iRe(−i〈(a, b), (c, d)〉)

for all a, c, b, d ∈ H. This completes the proof.

Theorem 3.2. (Parallelogram laws) A linear2–norm spaceH is a 2–inner product space
with the2—norm derived from the2–inner product defined in Theorem 2.3 if and only if the
following two equations hold:

(3.1)
‖a + c, b + d‖2 + ‖a− c, b− d‖2 + ‖c + b, d + a‖2 + ‖c− b, d− a‖2

= ‖a + ic, b + id‖2 + ‖a− ic, b− id‖2 + ‖c + ib, d + ia‖2 + ‖c− ib, d− ia‖2,
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(3.2)
‖a + c, b + id‖2 + ‖a + c, b− id‖2 + ‖a− c, b + id‖2 + ‖a− c, b− id‖2

= ‖b + d, a + ic‖2 + ‖b + d, a− ic‖2 + ‖b− d, a + ic‖2 + ‖b− d, a− ic‖2

for all a, c, b, d ∈ H.

Proof. Let H be a2–inner product space. Then, by the above lemma, one can prove that the
equations (3.1) and (3.2) hold.

Conversely, letH be a linear2–normed space satisfying (3.1) and (3.2). Then we can show
that

〈(a, b), (c, d)〉

=
1

8
[‖a + c, b + d‖2 + ‖a− c, b− d‖2 − ‖a + ic, b + id‖2 − ‖a− ic, b− id‖2]

+
1

8
i[‖a + ic, b + d‖2 + ‖a− ic, b + d‖2 − ‖a + c, b− id‖2 − ‖a− c, b + id‖2]

for all a, c, b, d ∈ H defines a2–inner product onH. To this end, we have the following:
(A) It follows from (3.1) that

〈(c, d), (a, b))〉

=
1

8
[‖a + c, b + d‖2 + ‖a− c, b− d‖2 − ‖a− ic, b− id‖2 − ‖a + ic, b + id‖2]

− 1

8
i[‖c + ia, b + d‖2 + ‖a + ic, b + d‖2 − ‖c− a, d + ib‖2 − ‖a + c, d− ib‖2]

= 〈(a, b), (c, d)〉
for all a, c, b, d ∈ H.

(B) If a andb are linearly independent, then‖a, b‖ > 0 and so

〈(a, b), (a, b)〉 = ‖a, b‖2 > 0.

(C) (3.2) shows that〈(a, b), (c, d)〉 = −〈(b, a), (c, d)〉 for all a, c, b, d ∈ H.
(D) It is easy to show that

〈(αa + ã, b), (c, d)〉 = α〈(a, b), (c, d)〉+ 〈(ã, b), (c, d)〉
for all a, c, b, d ∈ H. This completes the proof.

Theorem 3.3.Let H be a2–inner product space. Then, for any fixedx, c ∈ H, the mappings

a 7→ 〈(a, x), (c, x)〉, a 7→ 〈(c, x), (a, x)〉, a 7→ ‖a, x‖
are continuous onH.

Proof. The Schwartz inequality implies that

|〈(a1, x), (c, x)〉 − 〈(a2, x), (c, x)〉| = |〈(a1 − a2, x), (c, x)〉| ≤ ‖a1 − a2, x‖‖c, x‖,
which shows thata 7→ 〈(a, x), (c, x)〉 is uniformly continuous and so continuous.

In the same way, the mappinga 7→ 〈(c, x), (a, x)〉 is continuous.
Now, by the triangle inequality‖a1, x‖ ≤ ‖a1 − a2, x‖+ ‖a2, x‖, we have

‖a1, x‖ − ‖a2, x‖ ≤ ‖a1 − a2, x‖.
If we interchangea1 anda2 in the above inequality, then we have

|‖a1, x‖ − ‖a2, x‖| ≤ ‖a1 − a2, x‖.
Thusa 7→ ‖a, x‖ is also uniformly continuous and so continuous. This completes the proof.
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There are well–known different definitions of an orthogonality, namely, pythagorean orthog-
onality, isosceles orthogonality and Brushoff–James orthogonality in linear2–normed spaces
and2–inner product spaces [1, 2, 17] and others. Recently, Mazaheri et al. [16, 23, 24] intro-
ducedb–orthogonality by a different method and Gozali and Gunawan [14] observed that this
definition is too loose and proved that every two linearly independent vectors areb–orthogonal.

Let (H, ‖·, ·‖) be a linear2–normed space anda, c ∈ H. Then we have the following defini-
tions of an orthogonality:

Pythagorean orthogonality: a ⊥P c ⇐⇒ ‖a, k‖2 + ‖c, k‖2 = ‖a + c, k‖2 for all k ∈ H.
Isosceles orthogonality:a ⊥I c ⇐⇒ ‖a− c, k‖ = ‖a + c, k‖ for all k ∈ H.
Brushoff–James orthogonality: a ⊥BJ c ⇐⇒ ‖a, k‖ ≤ ‖a + αc, k‖ for all α ∈ R and

k ∈ H.
b–Orthogonality: a ⊥b c ⇐⇒ there existsb ∈ H with ‖a, b‖ 6= 0 such that‖a, b‖ ≤

‖a + αc, b‖ for all α ∈ R.

Now, we define newly the orthogonality in2–inner product spaces as follows:

Definition 3.4. Let (H, 〈(·, ·), (·, ·)〉) be a2–inner product space,0 6= x ∈ H anda, c ∈
H − 〈x〉 (where〈x〉 is the subspace ofH generated byx).

(1) We say thata is x–orthogonal toc if

〈(a, x), (c, x)〉 = 0,

which is denoted bya ⊥x c.

Since〈(a, x), (c, x)〉 = 0 implies〈(c, x), (a, x)〉 = 0, the relation⊥x is symmetric.

(2) We say thata is orthogonal toc (we writea ⊥ c) if, for all x ∈ H, a is x–orthogonal toc.

Let a ∈ H andS be a subset ofH. The x–orthogonal complementsa⊥x , a⊥ andS⊥ are
defined by

a⊥x = {a′ ∈ H : a ⊥x a′ }, a⊥ =
⋂
x∈H

a⊥x , S⊥ =
⋂
a∈S

a⊥.

Sincea ⊥x c anda ⊥x c̃ imply a ⊥x αc + c̃ anda⊥x is precisely the set of points where the
functionc 7→ 〈(a, x), (c, x)〉 is continuous (Theorem 3.3),it follows thata⊥x is a closed subspace
of H. Therefore,a⊥ andS⊥ are closed subspaces ofH. It is easy to show that, for alla, c ∈ H
andS, S1, S2 ⊂ H,

(A) a ⊥a c, 0 ⊥a c anda ⊥0 c;
(B) a ⊥c a ⇐⇒ a andc are linearly dependent;
(C) S1 ⊇ S2 =⇒ S⊥1 ⊆ S⊥2 ;
(D) S ⊆ S⊥⊥;
(E) S ∩ S⊥ = {0}.

Theorem 3.5.Let (H, 〈(·, ·), (·, ·)〉) be a2–inner product space. Then we have

a ⊥ c ⇐⇒ a ⊥P c

for all a, c ∈ H.

Proof. We can easily establish the Pythagorean law for2–inner product space and

〈(a, x), (c, x)〉 = 0 ⇐⇒ ‖a + c, x‖2=‖a, x‖2 + ‖c, x‖2
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for all a, x, c ∈ H. Now, for allx ∈ H, we have

a ⊥P c ⇐⇒ ‖a, x‖2 + ‖c, x‖2 = ‖a + c, x‖2

⇐⇒ 〈(a, x), (c, x)〉 = 0

⇐⇒ a ⊥x c

⇐⇒ a ⊥ c.

This completes the proof.

Definition 3.6. Let (H, 〈(·, ·), (·, ·)〉) be a2–inner product space and0 6= x ∈ H.
(1) A sequence{xn} in H is ax–Cauchy sequence if, for anyε > 0, there exists a positive

integerN such that
0 < ‖xm − xn, x‖ < ε

for all m, n ≥ N .
(2) H is x–Hilbert space if everyx–Cauchy sequence converges a point in a semi–2–normed

space(H, ‖·, x‖). Also,H is called a2–Hilbert space ifH is ax–Hilbert space for anyx ∈ H.
(3) A subsetA of 2–Hilbert spaceH is said to be closed ifA is closed in a semi–2–normed

space(H, ‖·, x‖) for all x ∈ H.

Lemma 3.7. If N is a closed subspace of ax–Hilbert spaceH andh ∈ H, then

dx(h,N) = ‖h− no, x‖ ⇐⇒ 〈(h− no, x), (n, x)〉 = 0

for all n ∈ N .

Proof. Suppose thatdx(h,N) = ‖h − no, x‖ and writez = h − no. Then, for all non–zero
n ∈ N, we have

‖z, x‖2 ≤ ‖z − 〈(z, x), (n, x)〉n
‖n‖2

, x‖2

= ‖z, x‖2 − 2|〈(z, x), (n, x)〉|2

‖n‖2
+
|〈(z, x), (n, x)〉|2

‖n‖2

= ‖z, x‖2 − |〈(z, x), (n, x)〉|2

‖n‖2
.

Thus it follows that〈(z, x), (n, x)〉 = 0.
Conversely, by the Pythagorean law, we have

‖h− n, x‖2 = ‖h− no + no − n, x‖2 = ‖h− no, x‖2 + ‖no − n, x‖2 ≥ ‖h− no, x‖2

for all n ∈ N . Henceinfn∈N ‖h− n, x‖ is attained atno.

Corollary 3.8. If N is a closed subspace of a2–Hilbert spaceH andh ∈ H, then we have

dx(h,N) = ‖h− no, x‖, ∀x ∈ H, ⇐⇒ h− no ⊥ n, ∀n ∈ N.

Theorem 3.9. If N is a closed subspace of a2–Hilbert spaceH, then we have

N⊥ = {0} ⇐⇒ N = H.

Proof. Clearly, if N = H, thenN⊥ = {0}.
Conversely, ifN 6= H andh /∈ N , then there existsno ∈ N such thatdx(h,N) = ‖h−no, x‖

for all x ∈ H. It follows from Corollary 3.8 that0 6= h − no ⊥ N and soN⊥ 6= {0}. This
completes the proof.
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Theorem 3.10.If N is a closed subspace of a2–Hilbert spaceH, then we have

N ⊕N⊥ = H.

Proof. First, we show thatN ⊕ N⊥ is a closed subspace ofH. Let ci ∈ N ⊕ N⊥ such that
ci → c. Thenc ∈ N ⊕N⊥. In fact, suppose thatci = ai + bi with ai ∈ N andbi ∈ N⊥ for all
i ∈ N. Therefore, using the Pythagoras law, sinceN ⊥ N⊥, we have

‖ci+p − ci, x‖2 = ‖ai+p − ai, x‖2 + ‖bi+p − bi, x‖2

for all x ∈ H. Since{cn} is convergent, it is ax-cauchy sequence. It follows easily from the
above that both{ai} and{bi} arex–Cauchy sequences and so, sinceH is a 2–Hilbert space,
there exista, b ∈ H such thatai → a andbi → b.

On the other hand,N andN⊥ are closed and soa ∈ N andb ∈ N⊥. Hence

c = lim
i→∞

(ai + bi) = a + b ∈ N ⊕N⊥.

Now, if n′ ∈ [N ⊕ N⊥]⊥, thenn′ ∈ N⊥ ∩ N⊥⊥. Therefore,n′ ⊥ n′, that is,n′ ⊥x n′ for
all x ∈ H. Thusn′ andx are linearly dependent for allx ∈ H. Also, n′ and0 are linearly
dependent. Thus it follows thatn′ = 0 andN⊥ ∩ N⊥⊥ = {0}. Therefore, it follows form
Theorem 3.9 thatN ⊕N⊥ = H. This completes the proof.

Definition 3.11. Let H be ax- Hilbert space and〈x〉 be a vector space generated byx ∈ H.
A functionF : H × 〈x〉 → C is called ax–linear function if it satisfy the following conditions:
for all a, ã ∈ H andx ∈ 〈x〉,

(1) F (a + ã, x) = F (a, x) + F (ã, x);
(2) F (αa, x) = αF (a, x).
Moreover, ax–linear functionF is said to be bounded if there exists a positive number‖F‖x

such that
‖F‖x = inf{K > 0 : |F (a, x)| ≤ K‖a, x‖}.

Example 3.12.Let H is ax–Hilbert space andy ∈ H. A function L(x,y) : H × 〈x〉 → C
defined by the formula

L(x,y)(a, x) := 〈(a, x), (y, x)〉
is x–linear and bounded. Moreover,‖L(x,y)‖ = ‖x, y‖). In fact, for alla, ã ∈ H andα ∈ C, we
have

(1) L(x,y)(a + ã, x) = 〈(a + ã, x), (y, x)〉 = L(x,y)(a, x) + L(x,y)(ã, x);
(2) L(x,y)(α a, x) = 〈(αa, x), (y, x)〉 = αL(x,y)(a, x);
(3) |L(x,y)(a, x)| = |〈(a, x), (y, x)〉| ≤ ‖y, x‖‖a, x‖ (by the Schwartz inequality).

Theorem 3.13.Let H be ax–Hilbert space. IfF is continuous andx–linear function on
H × 〈x〉, then there existsy ∈ H such that

F (a, x) = L(x,y)(a, x)

for all a ∈ H.

Proof. If F (a, x) = 0 for all a ∈ H, then takey = 0. Otherwise, define

N := {a : F (a, x) = 0}.
SinceF is a continuous andx–linear function, it follows thatN is a closed subspace ofH.
SinceF (a, x) 6= 0 for somea ∈ H, it follows that from Theorem 3.10 that there existsz ∈ N⊥

such that‖z, x‖ = 1. Put
u := F (a, x)z − F (z, x)a.
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It is easy to see thatu ∈ N and〈(u, x), (z, x)〉 = 0, that is,

〈(F (a, x)z − F (z, x)a, x), (z, x)〉 = F (a, x)‖z, x‖2 − F (z, x)〈(a, x), (z, x)〉 = 0.

Thus it follows that

F (a, x) = F (a, x)‖z, x‖2 = 〈(a, x), (F (z, x)z, x)〉.

Takey = F (z, x)z. Then we have

F (a, x) = L(x,y)(a, x)

for all a ∈ H. This completes the proof.

4. Problems

We know that the Riesz representation theorem in Hilbert spaces is one of the most important
tools in applications of Hilbert spaces in pure and applied mathematics and natural sciences. In
this paper, by using our results, we can not prove a version of the Riesz representation theorem
in 2–Hilbert spaces. We need to define the dual space of a2–Hilbert space and ax–Hilbert
space. In the other word, we have to define the bounded linear operators between2–Hilbert
spaces or linear2–normed spaces. In fact, there are some works to define the bounded linear
mappings between linear 2–normed spaces (see, for example, [18, 20]), but we need some more
information in this problem to prove our ideas.
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