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ABSTRACT. In this paper, first, we introduce the new concept of (compPexjilbert spaces,

that is, we define the concept ®finner product spaces with a complex val@edhner product

by using the2—norm. Next, we prove some theorems on Schwartz’s inequality, the polarization
identity, the parallelogram laws and related important properties. Finally, we give some open
problems related to 2—Hilbert spaces.
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2 M. ESHAGHI GORDJI, A. DIVANDARI, M. R. SAFI AND Y. J. CHO

1. INTRODUCTION

The concepts a-metric spaces and linearnormed spaces were first introduced by Gahler
in 1963 and 1964 [11, 12]. Since then, many authors, Freese et al., Gahler, Cho et al., Dimin-
nie et al., Gunawan et al. have developed extensively topological and geometric structures
of 2—normed space@—-metric spaces, sent—normed spaces, sergi-metric spaces, ultra—
2—normed spaces, hon—-Archimedeamormed spaces and the relations amanagorms, bi—
vectors and usual norms, and others (seel[1},12,/3,/4) 7, 8/ 9,113,/14) 15} 18,/19, 20} 21, 22, 23]).
Particulary, in[[8], Freese and Cho showed thatmetric space in which unique “lines" exist
and expressed entirely in terms of thanetric is a linea—normed space.

A linear 2-normed space is a paifi, ||-,-||), where H is a a complex vector space of a
dimension greater than one ajhd: || is a real-valued mapping di x H satisfying the following
conditions: for alle,b € H anda € C,

(2N1) [|aa, bl = |o]||a, b

(2N2) [[b, al| = [|a, ]};

(2N3) ||a, ]| = 0 if and only if « andb are linearly dependent;

(2N4) [[a1 + az, b]| < lax, bl| + [laz, b]].

We can consider 2-norm onH defined by an inner produ¢t, -) on H as follows:

(a,a) (a,b)
(b,a) (b, b)

forall a,b € H. Geometrically, -norm function generalizes the concept of the parallelogram
law spanned by the vectotsandb, which may be given explicitly by the formula, b|| =
layby — agbi|, wherea = (ay,as),b = (by,by) € R? (see [14]). Observe that, in a linear
2—normed spacéH, |-, -||),

1
2

la, bl :=

la,bl| = lla, b+ aal|
foralla,b € H anda € C.

The properties of linea&—normed spaces have been extensively studied by many authors, but
many properties of them are almost same to the properties of usual normed spaces. The same
properties also occur i2-inner product spaces, which were introduced by Diminnie et al. [6].

A pair (H, (-, -|-) is a2—inner product space, whefe-|-) is a real-valued function defined on
H x H x H satisfying the following conditions:

(211) (a,alb) = (b,bla) and(a, bld) = (b, a|d);

(212) (a,alb) > 0 and(a,alb) = 0 if and only if « andb are linearly dependent;

(213) (aay + ag,bld) = a(ay, b|d) + (az,b|d) forall a,b,d € H anda € C.

Many authors have obtained important results on orthogonality in lideaormed spaces
and2—inner product spaces (see, for example, [1, 14, 15, 16, 17, 24]). But it seems that there
exists a fault in the definition of 8-inner product space. The most important defect is the
following:

We can not defing—Hilbert spaces by the above definition.

As we know, theory of Hilbert spaces plays a central role in many areas of mathematics,
not only in analysis, but also including (differential) geometry, group theory, stochastic and
even number theory. The earliest Hilbert spaces were studied from this point of view in the
first decade of the 20th century by Hilbert, Schmidt and Riesz. They are indispensable tools
in the theories of partial differential equations, quantum mechanics, Fourier analysis (which
includes applications to signal processing and heat transfer) and Ergodic Theory which forms
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the mathematical underpinning of the study of thermodynamics. Today, the most spectacu-
lar new applications of theory of Hilbert spaces are given by Noncommutative Geoimetry [5],
where the motivation from pure mathematics is merged with the physical input from quantum
mechanics. Consequently, this is an important field of research in pure mathematics as well as
in mathematical physics.

In this paper, we introduce the best generalized definition2fianer product space which
includes all the previous definitions and the geometric approach to the concept of a more ap-
propriate. Then we define newly the concepteHilbert spaces and give several important
properties.

In the near future, we hope that the notioreeHilbert spaces provides the new mathemat-
ical foundation of physics (specially in quantum theory) and engineering, typically as infinite—
dimensional function spaces.

2. New definition of 2—inner product spaces

Definition 2.1. A complex vector spac# is called a&2—inner product space if there exists a
complex-valued functioi(, -), (-, -)) on H* x H? such that, for alk, b, c,d € H anda € C,

(11) {(a,b), (¢, d)) = ((c, d), (a,));
(12) If a andb are linearly independent iff, then{(a, b), (a, b)) > 0;

(|3) <(CL, b)a (Cu d)> = _<(b7 CL), (C, d>>1
(14) {(aa + a,b), (c,d)) = a{(a,b), (¢,d)) + ((a,b), (c,d)).

Some immediate consequences of these axioms are as follows: foballd,b,é,d € H
anda, g € C,

(P1) ((0,0), (¢, d)) = (b ab), (¢, d))0;
(P1) ((a,ab +b), (c,

((

(P1) {(a,b), (Bc +¢,
(P1) ((a,b), (c,Bd +
(P1) ((a,b), (c,d)) =
(P1) ((a,b), (a,b)) =
(P1) ((a,b), (a,b)) =

Theorem 2.2. (The Schwartz Inequality) Letl be a2—-inner product space. Then we have
the following:

[{(a,), (e, b)* < {(a,b), (a,0)){(c, ), (c,0))

foralla,b,c € H.

Proof. For any complex numbe¥, we have
0 < ((Aa+¢,b), (Aa+c,b))
= ((A\a,b), (Aa+¢,b)) + {(c,b), (Aa + ¢, b))
= M\{(a,b), (a,b)) + X(a,b), (c,b)) + X(c,b), (a,b)) + ((¢,b), (c,)).

Let e andb are linearly independent. Then, by putting

). (@)
(D), (a.0)
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in the above inequality, we have

4(0,), (e DD {(e.b) (0, ) {(0,1), (1)
((0.b) a1 ((0.b). )
b)) (). @)
(o wp) =0

Therefore, we have

[{(a,), (c;b))* < {(a,b), (a,0)) ((c, ), (c,)).

This completes the proog

Theorem 2.3. Let H be a2-inner product space. Then the real-valued functjan|| :
H x H — R defined by

1
“a’ b” = <(av b)? (av b)>2
is a2—norm onH.

Proof. Now, we verify that]|-, -|| satisfies the following properties 8fnorms:
(1) (14) and (P3) show thalna, b|| = ((ea,b), (aa, b))z = |al||a, b|| for all a,b € H and all
a e C.
(2) It follows from (P5) that|b, a|| = (b, a), (b, a))2 = ||a,b| for all a,b € H.
(3) (P6) follows that|a, b|| = 0 if and only if « andb are linearly dependent for allb € H.
(4) By the Schwartz inequality, we have

la +a,b||* = {(a + a,b), (a+ a,b))
= ((a,b), (a,0)) +((a,b), (a,)) + ((a,b), (a,)) + ((a,b), (a,]))
< ((a,b), (a,0)) +((a,b), (a,0)) + 2[{(a,b), (a,b))|
< [la, ol + fla, bl} + 2][a, b ||, b]]
< (lla, bl + lla, b]])*
forall a,a,b € H. This shows that is a linear2—normed space. This completes the prqgof.

Example 2.4.Let H be a complex vector space with inner prod{ict). We define

@iy g

forall a,b,c,d € H. Then we have the following:

@ () ey = | G G| =] en S| - ed o
|

(2) If a andb be linearly independent, thejal|||b]| >

)
(a,b)| and so we have

{(a,b), (a,b)) = ‘ 22:25 EZ, 2>>

(3) —((b,a), (c,d)) :_‘ ézg ézfg ‘z ((a,b), (¢, d)).

(4) Similarly, we have

((aa,b), (¢, d)) = a{(a, b), (¢, d))

((a+a,b),(c,d)) ={(a,b), (c.d)) +{(a,b), (c,d))
forall a,b,c,d,a, € H anda € C. Therefore, it follows that{ is a2—inner product space.

and
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Consider a spade of well-defined complex—valued functions over an intefzab|. Then a
2—inner product is given by

. [P fhdt [P fkadt

(U:9), (0 B) = =

fab gh dt fab gk dt
forall f,g,h, k € F.

3. Main results

We know that everg—inner product is a lineaz—normed space with respect to thenorm
defined in Theorem 2.3. Is the converse true? That is, wi2emarm is derived from a—inner
product in this way? The answer is given by the following theorems:

Lemma 3.1. (Polarization identity) Let be a2—inner product space. Then we have
((a,b), (c,d))
1
= glla+c;b+d|* +lla—c;b—d|’ = lla +ic, b+ id|* — [l — ic, b — id||’]

1
+§ﬂWqub+@P+Ha—wm+dW—wa+gb—mW—wa—qb+mW]

foralla,c,b,d € H.

Proof. We have
la+c,b+d|* + |la — ¢, b—d|?
= 2([la, bl + lle, bl* + lla, d||* + [le, d]]*] + ((a,b), (c,d)) + ((c.d), (a,]))
+ (¢, 0), (a,d)) + ((a, d), (¢, b)),
la+ic,b+id|* + |la — ic,b —id||?
= 2([la, blf* + lle, bl* + lla, d||* + lle, d]|*] = {(a, ), (¢, d)) — {(c,d), (a, D))
+((¢,0), (a,d)) + {(a,d), (c, b))
forall a,c,b,d € H and so
Re({(a,b), (c, d)))Zé[Ha +c,b+d|]*+|ja—c,b—d|* — ||a+ic,b+id||* — |la—ic,b—id|?]

forall a,c,b,d € H.
On the other hand, we have

{(a,0),(c,d)) = Re(((a,b), (¢,d))) + iRe(—i((a,]), (¢, d)))
forall a,c,b,d € H. This completes the prooi

Theorem 3.2. (Parallelogram laws) A linea2—norm space is a 2—inner product space
with the 2—norm derived from th@—inner product defined in Theorem 2.3 if and only if the

following two equations hold:
3.1) la+c,b+d|*+|la—c,b—d||J> + |lc+b,d+al*+|c—bd—al?
' = |la +ic,b+id|* + ||a — ic,b — id||* + ||c + ib,d + ia|® + ||c — ib, d — ial?,
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la+c,b+id|* + |la+c,b—id||* + ||a — ¢,b+ id|)* + |la — ¢, b — id|?
= |b+d,a+ic|> + ||b+d,a—ic|* + ||b—d,a +ic|* + ||b — d,a — ic|]?
foralla,c,b,d € H.

(3.2)

Proof. Let H be a2—inner product space. Then, by the above lemma, one can prove that the

equations[(3]1) and (3.2) hold.
Conversely, let{ be a linea—normed space satisfying (8.1) apd [3.2). Then we can show
that

((a,0), (¢, d))
1
8

[HCL + C7b+ d||2 + ||CL - C7b - dH2 - ||CL + iC, b+ Zd||2 - Ha’ - iC,b - ZdHQ]

1
+ 5 i[l|a +ic,b+d||* + |la —ic,b+d||* — ||a + ¢, b —id||* — ||a — ¢, b+ id||*]

forall a,c,b,d € H defines &—inner product orf{. To this end, we have the following:
(A) It follows from (3.7) that

((c,d),(a,b)))
1
:§Wa+qb+ﬂP+Ha—gb—ﬂP—Ha—wﬁ—%ﬂP—Ha+wﬁ+%ﬂm

1
— g illle+ia,b+d|* +lla+ic.b+d|* = fle— a,d+ bl* = la+c,d —ib]]]

= ((a,b), (c,d))
forall a,c,b,d € H.
(B) If a andb are linearly independent, thela, b|| > 0 and so

{(a,b), (a,b)) = [la,b]* > 0.

(C) (3.2) shows thaf(a, b), (¢,d)) = —((b,a), (c,d)) forall a,c,b,d € H.
(D) Itis easy to show that

((aa +a,b), (c,d)) = a(a,b), (c,d)) + ((@,b), (c,d))
forall a,c,b,d € H. This completes the prooi

Theorem 3.3.Let H be a2—-inner product space. Then, for any fixed: € H, the mappings
a—((a,2),(c,x)), a—{(cz)(az2), a—|a .z

are continuous o/ .

Proof. The Schwartz inequality implies that

|<(a17£)7 <C7 .I)> - <(a27 x)? <C7 ZIJ)>| = |<(CL1 - a27$)7 (C, I)>| < ||CL1 - CLQ,ZL‘HHC, I”?
which shows that — ((a, x), (¢, z)) is uniformly continuous and so continuous.

In the same way, the mappinag— ((c, z), (a, x)) iS continuous.
Now, by the triangle inequalityja,, z|| < ||a; — aq, z|| + ||az, z||, we have

lay, z[| = llag, || < [lax — ag, =].
If we interchange:; andas in the above inequality, then we have
lar, z|| = flaz, z|[| < |lar — a2, z||.

Thusa +— ||a, z|| is also uniformly continuous and so continuous. This completes the groof.
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There are well-known different definitions of an orthogonality, namely, pythagorean orthog-
onality, isosceles orthogonality and Brushoff-James orthogonality in I2ye@rmed spaces
and2-inner product spaces|[1},(2,/117] and others. Recently, Mazaheri et al. [16,/23, 24] intro-
ducedb—orthogonality by a different method and Gozali and Gunawah [14] observed that this
definition is too loose and proved that every two linearly independent vectobs@t@ogonal.

Let (H, ||-,-||) be a lineaRk—normed space and ¢ € H. Then we have the following defini-
tions of an orthogonality:

Pythagorean orthogonality: a 1.7 ¢ < |la,k||*> + ||c, k|| = |la + ¢, k||* forall k € H.

Isosceles orthogonality:a 17 ¢ < |la—c¢, k|| = ||la+c, k| forallk € H.

Brushoff-James orthogonality: a 1?7 ¢ <= |a, k| < ||a + ac, k|| foralla € R and
ke H.

b—Orthogonality: a 1° ¢ <= there existd € H with ||a,b|| # 0 such that|a,b|| <
|la + ac, b|| for all a € R.

Now, we define newly the orthogonality #+inner product spaces as follows:
Definition 3.4. Let (H,((-,-),(,-))) be a2—inner product spacé, # x € H anda,c €

H — (z) (where(x) is the subspace df generated by).
(1) We say that: is x—orthogonal ta: if

((a,z),(c,z)) =0,
which is denoted by 1* c.
Since((a, x), (¢, z)) = 0 implies{((c, x), (a,z)) = 0, the relationL” is symmetric.
(2) We say that is orthogonal ta: (we writea L ¢) if, for all z € H, a is x—orthogonal ta-.

Leta € H and S be a subset ofi. The z—orthogonal complements’, ' and S+ are
defined by

ar={d €H:al%d}, a"= ﬂai, SL:ﬂal.
x€H acs

Sincea L* canda 1* ¢imply a L* ac + ¢ anda; is precisely the set of points where the
functionc — ((a, z), (¢, v)) is continuous (Theorem 3.3),it follows that is a closed subspace
of H. Thereforea! andS+ are closed subspaces#f It is easy to show that, for all, c € H
ands, 51,5, C H,

(A) a L%¢, 0 L*canda L°¢;

(B) a 1¢a <= aandc are linearly dependent;

(C)S$125, = S; C Sy

(D) S € 5+,

(E) SN S+ ={0}.

Theorem 3.5.Let (H, ((-,-), (+,-))) be a2—inner product space. Then we have
alc = allc

foralla,c € H.

Proof. We can easily establish the Pythagorean law2fenner product space and

((a,2),(c,2)) =0 <= |a+cal*=]a x| + [lc, =

AJMAA Vol. 10, No. 1, Art. 8, pp. 1-11, 2013 AIJMAA
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forall a,z,c € H. Now, for allx € H, we have
allc = x|’ + ez = latc |
— ((a,2),(¢c,z)) =0
<~ al®c
< alc
This completes the prooi

Definition 3.6. Let (H, ((-,), (+,-))) be a2—inner product space and# = € H.

(1) Asequencdz,} in H is ax—Cauchy sequence if, for amy> 0, there exists a positive
integerN such that

0 < ||xm —xn, x|]| <€

forallm,n > N.

(2) H is z—Hilbert space if every—Cauchy sequence converges a point in a semi—2—normed
space H, ||-, z||). Also, H is called e2—Hilbert space i is axz—Hilbert space for any € H.

(3) A subsetA of 2—Hilbert spaceH is said to be closed ifl is closed in a semi—2—normed
space H, ||, z|) forallz € H.

Lemma 3.7.If N is a closed subspace oftaHilbert spaced andh € H, then
dy(h,N) = ||h —no, x| <= ((h —ne,2),(n,x)) =0
foralln € N.

Proof. Suppose that,(h, N) = ||h — n,, z|| and writez = h — n,. Then, for all non—-zero
n € N, we have
<(Z,33),(7”L,£L‘)>7”L xHQ
Il
20{(z,2), (2D {(z2), (n, 2)?
2 + 2

2]l 7l

(=), (n, )

7|2

Iz, 2" < ||z —

= ||z, z|* —

= [z, 2)* —
Thus it follows that((z, z), (n, z)) = 0.
Conversely, by the Pythagorean law, we have
Ih = n,z)|* = [k = 1o +no —n,2]|* = b = 1o, 2[|* + [In — n,z[|* > [|h = no,

foralln € N. Henceinf,cx ||h — n, z|| is attained at,. §

Corollary 3.8. If N is a closed subspace obaHilbert spaced andh € H, then we have
dy(h,N)=||h —ne,z|, Ve € H, <= h—n, L n, Yn€ N.

Theorem 3.9.1f N is a closed subspace obaHilbert space, then we have
Nt ={0} <= N=H.

Proof. Clearly, if N = H, thenN+ = {0}.

Conversely, itN # H andh ¢ N, then there exists, € N suchthatl,(h, N) = ||h—n,, z|
forall z € H. It follows from Corollary[3.8 thad # h —n, L N and soN* # {0}. This
completes the proof
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Theorem 3.10.If N is a closed subspace oRaHilbert spaced, then we have
N& Nt =H.

Proof. First, we show thatV & N= is a closed subspace &f. Letc; € N @ N+ such that
¢; — c¢. Thenc € N @ N*. In fact, suppose that = a; + b; with a; € N andb; € N+ for all
i € N. Therefore, using the Pythagoras law, sinéel. N+, we have
iy = i ll? = iy — a2 |? + bigp — bi, 2]
forallx € H. Since{c,} is convergent, it is a-cauchy sequence. It follows easily from the
above that botHa;} and{b;} arex—Cauchy sequences and so, siités a2—Hilbert space,
there existu, b € H such thaty; — a andb; — b.
On the other handy and N+ are closed and se€ N andb € N*. Hence
c= hm((zl—l-bl) :CL—FbEN@NJ'.

Now, if n’ € [N & Nt]*, thenn’ € Nt N N+, Thereforeyn’ L »/, thatis,n’ L= n’ for
all z € H. Thusn' andx are linearly dependent for all € H. Also, n’ and0 are linearly
dependent. Thus it follows that = 0 and N* N N+t = {0}. Therefore, it follows form
Theoren) 3.9 thalV @ N+ = H. This completes the prook

Definition 3.11. Let H be az- Hilbert space andz) be a vector space generatediby H.
Afunction F' : H x (x) — C is called az—linear function if it satisfy the following conditions:
forall a,a € H andx € (z),

(1) F(a+a,x) = F(a,z) + F(a,z);

(2) F(aa,z) = aF(a,x).

Moreover, ar—linear functionF' is said to be bounded if there exists a positive nunilzéf,
such that

|F|lz = inf{K >0:|F(a,z)| < K|a,z|}.

Example 3.12.Let H is az—Hilbert space ang € H. A function L, : H x (z) — C
defined by the formula
L(%y)(a?x) = <(CL,ZL’), (y,[)ﬂ'))

is z—linear and bounded. Moreovglt,, || = ||z, y|[). Infact, for alla,a € H anda € C, we
have

(1) Ly (a+a,z) = {(a+a2z),(y,2)) = Ly (a,z) + Ly (a,z);

(2) Loy a,2) = ((aa,z), (y, 2)) = aLi,,(a, ) o

() [Liay (@ z)| = [{(a,2), (y,2))| < [ly, z[ll|a, z|| (by the Schwartz inequality).

Theorem 3.13.Let H be axz—Hilbert space. Iff' is continuous and—linear function on
H x (z), then there existg € H such that

F(a,z) = Ly (a,x)
foralla € H.

Proof. If F(a,z) = 0forall a € H, then takey = 0. Otherwise, define

N:={a: F(a,z) =0}.
Since F' is a continuous and-linear function, it follows thatV is a closed subspace &f.
SinceF (a, x) # 0 for somea € H, it follows that from Theorerp 3.0 that there exists N+

such that|z, z|| = 1. Put
u:= F(a,z)z — F(z,z)a.
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It is easy to see that € N and((u, z), (z,z)) = 0, that s,
(F(a,2)z — F(z,2)a,2), (2,7)) = F(a, )|z, z||* — F(2,2){(a, ), (z,2)) = 0.
Thus it follows that
F(a,x) = F(a,2)|z, 2| = {(a,2), (F(z,2)z, ).
Takey = F(z, x)z. Then we have
F(a,2) = Ly (a,7)
for all a € H. This completes the prooi

4. Problems

We know that the Riesz representation theorem in Hilbert spaces is one of the most important
tools in applications of Hilbert spaces in pure and applied mathematics and natural sciences. In
this paper, by using our results, we can not prove a version of the Riesz representation theorem
in 2—Hilbert spaces. We need to define the dual space2silbert space and a—Hilbert
space. In the other word, we have to define the bounded linear operators béut&krert
spaces or linea2—normed spaces. In fact, there are some works to define the bounded linear
mappings between linear 2—normed spaces (see, for example,[18, 20]), but we need some more
information in this problem to prove our ideas.
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