


Paper's Title:
pvalent Meromorphic Functions Involving Hypergeometric and Koebe Functions by Using Differential Operator
Author(s):
S. Najafzadeh, S. R. Kulkarni and G. Murugusundaramoorthy
Department of Mathematics,
Fergusson College, Pune University,
Pune  411004,
India.
Najafzadeh1234@yahoo.ie
kulkarni_ferg@yahoo.com
School of Science and Humanities,
Vellore Institute of Technology, Deemed University,
Vellore  632014,
India.
gmsmoorthy@yahoo.com
Abstract:
New classes of multivalent meromorphic functions involving hypergeometric and Koebe functions are introduced,we find some properties of these classes e.g. distortion bounds, radii of starlikeness and convexity, extreme points, Hadamard product and verify effect of some integral operator on members of these classes.
Paper's Title:
Weakly Compact Composition Operators on Real Lipschitz Spaces of Complexvalued Functions on Compact Metric Spaces with Lipschitz Involutions
Author(s):
D. Alimohammadi and H. Alihoseini
Department of Mathematics,
Faculty of Science,
Arak University
P. O. Box,3815688349,
Arak,
Iran.
Email: dalimohammadi@araku.ac.ir
Email:
hr_alihoseini@yahoo.com
URL: http://www.araku.ac.ir
Abstract:
We first show that a bounded linear operator T on a real Banach space E is weakly compact if and only if the complex linear operator T on the complex Banach space E_{C} is weakly compact, where E_{C} is a suitable complexification of E and iT' is the complex linear operator on E_{C} associated with T. Next we show that every weakly compact composition operator on real Lipschitz spaces of complexvalued functions on compact metric spaces with Lipschitz involutions is compact.
Paper's Title:
On a Subclass of Uniformly Convex Functions Defined by the DziokSrivastava Operator
Author(s):
M. K. Aouf and G. Murugusundaramoorthy
Mathematics Department, Faculty of Science,
Mansoura University 35516,
Egypt.
mkaouf127@yahoo.com
School of Science and Humanities, VIT University
Vellore  632014,
India.
gmsmoorthy@yahoo.com
Abstract:
Making use of the DziokSrivastava operator, we define a new subclass T^{l}_{m}([α_{1}];α,β) of uniformly convex function with negative coefficients. In this paper, we obtain coefficient estimates, distortion theorems, locate extreme points and obtain radii of closetoconvexity, starlikeness and convexity for functions belonging to the class T^{l}_{m}([α_{1}];α,β) . We consider integral operators associated with functions belonging to the class H^{l}_{m}([α_{1}];α,β) defined via the DziokSrivastava operator. We also obtain several results for the modified Hadamard products of functions belonging to the class T^{l}_{m}([α_{1}];α,β) and we obtain properties associated with generalized fractional calculus operators.
Paper's Title:
A Subclass of Meromorphically Multivalent Functions with Applications to Generalized Hypergeometric Functions
Author(s):
M. K. Aouf
Mathematics Department,
Faculty of Science,
Mansoura University 35516,
Egypt
mkaouf127@yahoo.com
Abstract:
In this paper a new subclass of meromorphically multivalent functions, which is defined by means of a Hadamard product (or convolution) involving some suitably normalized meromorphically pvalent functions. The main object of the present paper is to investigate the various important properties and characteristics of this subclass of meromorphically multivalent functions. We also derive many interesting results for the Hadamard products of functions belonging to this subclass. Also we consider several applications of our main results to generalized hypergeomtric functions.
Paper's Title:
On a Class of Uniformly Convex Functions Defined by Convolution with Fixed Coefficient
Author(s):
T. N. Shanmugam, S. Sivasubramanian, and G. Murugusundaramoorthy
Department of Mathematics,
College of Engineering,
Anna University,
Chennai  600 025,
India.
drtns2001@yahoo.com
Department of Mathematics,
University College of Engineering,
Tindivanam
Anna UniversityChennai,
Saram604 703,
India.
sivasaisastha@rediffmail.com
School of Sciences and Humanities,
VIT University, Vellore632 014,
India.
gmsmoorthy@yahoo.com
Abstract:
We define a new subclass of uniformly convex functions with negative and fixed second coefficients defined by convolution. The main object of this paper is to obtain coefficient estimates distortion bounds, closure theorems and extreme points for functions belong to this new class . The results are generalized to families with fixed finitely many coefficients.
Paper's Title:
Weak Solution for Hyperbolic Equations with a NonLocal Condition
Author(s):
Lazhar Bougoffa
King Khalid
University, Faculty of Science, Department of Mathematics,
P.O.Box 9004, Abha, Saudi Arabia
abogafah@kku.edu.sa
Abstract:
In this paper, we study hyperbolic equations with a nonlocal condition. We prove the existence and uniqueness of weak solutions, using energy inequality and the density of the range of the operator generated by the problem.
Paper's Title:
Certain Inequalities for P_Valent Meromorphic Functions with Alternating Coefficients Based on Integral Operator
Author(s):
A. Ebadian, S. Shams and Sh. Najafzadeh
Department of Mathematics, Faculty of Science
Urmia University, Urmia,
Iran
a.ebadian@mail.urmia.ac.ir
sa40shams@yahoo.com
Department of Mathematics, Faculty of Science
Maragheh University, Maragheh,
Iran
Shnajafzadeh@yahoo.com
Abstract:
In this paper we introduce the class of functions regular and multivalent in the and satisfying
where
is
a linear operator.
Coefficient inequalities, distortion bounds, weighted mean and
arithmetic mean of functions for this class have been obtained.
Paper's Title:
Properties of Certain Multivalent Functions Involving Ruscheweyh Derivatives
Author(s):
NEng Xu and DingGong Yang
Department of Mathematics,
Changshu Institute of Technology,
Changshu, Jiangsu 215500,
China
Abstract:
Let A_{p}(p∈ N) be the class of functions which are analytic in the unit disk. By virtue of the Ruscheweyh derivatives we introduce the new subclasses C_{p}(n,α,β,λ,μ) of A_{p}. Subordination relations, inclusion relations, convolution properties and a sharp coefficient estimate are obtained. We also give a sufficient condition for a function to be in C_{p}(n,α,β,λ,μ)
Search and serve lasted 1 second(s).