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2 M. K. AOUF AND G. MURUGUSUNDARAMOORTHY

1. I NTRODUCTION

Let S denote the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n,

that are analytic and univalent in the open unit discU = {z : |z| < 1}. Let K(α) and
S∗(α) denote the subclasses ofS that are, respectively, convex and starlike functions of order
α, 0 ≤ α < 1. For convenience, we writeK(0) = K andS∗(0) = S∗ (e.g., [24]). Goodman
([6] and [7]) defined the following subclasses ofK andS∗.

Definition 1.1. A functionf(z) is uniformly convex (starlike) inU if f(z) is in K(S∗) and has
the property that for every circular areγ contained inU , with centerζ also inU , the arcf(γ) is
convex (starlike) with respect tof(ζ).

Goodman ([6] and [7]) then gave the following two-variable analytic characterizations of
these classes, denoted, respectively, by UCV and UST.

Theorem 1.1(A). A functionf(z) of the form (1.1) is in UCV if and only if

(1.2) Re

{
1 + (z − ζ)

f
′′
(z)

f ′(z)

}
≥ 0, (z, ζ) ∈ U × U ,

and is in UST if and only if

(1.3) Re

{
f(z)− f(ζ)

(z − ζ)f ′(z)

}
≥ 0, (z, ζ) ∈ U × U .

Ma and Minda[14] and Ronning[19] independently found a more applicable one-variable
characterization for UCV.

Theorem 1.2(B). A functionf(z) of the form (1.1) is in UCV if and only if

(1.4) Re

{
1 +

zf
′′
(z)

f ′(z)

}
≥

∣∣∣∣zf ′′
(z)

f ′(z)

∣∣∣∣ , z ∈ U .

We note that [6] that the classical Alexander’s resultf(z) ∈ K ⇔ zf
′
(z) ∈ S∗ does not

hold between the classes UCV and UST. Later on, Ronning [20] introduced a new classSp of
starlike functions related to UCV defined as

(1.5) f(z) ∈ Sp ⇔ Re

{
zf

′
(z)

f(z)

}
≥

∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ , z ∈ U .

Note that

(1.6) f(z) ∈ UCV ⇔ zf
′
(z) ∈ Sp .

Also in [19], Ronning generalized the classes UCV andSp by introducing a parameterα in
the following way.

Definition 1.2. A function f(z) of the form (1.1) is inSp(α), if it satisfies the analytic charac-
terization:

(1.7) Re

{
zf

′
(z)

f(z)
− α

}
≥

∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ , α ∈ R; z ∈ U ,
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andf(z) ∈ UCV (α), the class of uniformly convex functions of orderα, if and only ifzf
′
(z) ∈

Sp(α).

For the classSp(α), we get a domain whose boundary is a parabola with vertexw = 1+α
2

.
Also, we note thatSp(α) ⊂ S∗ for all −1 ≤ α < 1, Sp(α) * S for α < −1 andUCV (α) ⊂ K
for α ≥ −1.

By β − UCV, 0 ≤ β < ∞, we denote the class of allβ− uniformly convex functions
introduced by Kanas and Wisniowska [8]. Recall that a functionf(z) ∈ S is said to beβ-
uniformly convex inU , if the image of every circular arc contained inU with center atζ, where
|ζ| ≤ β, is convex. Note that the class1− UCV coincides with the classUCV . Moreover, for
β = 0 we get the classK. From [8] it is known thatf(z) ∈ β − UCV if and only if it satisfies
the following condition

(1.8) Re

{
1 +

zf
′′
(z)

f ′(z)

}
> β

∣∣∣∣zf ′′
(z)

f ′(z)

∣∣∣∣ , z ∈ U, 0 ≤ β < ∞ .

We consider the classβ − S∗, 0 ≤ β < ∞, of β− starlike functions (see [9]) which are
associated withβ− uniformly convex functions by the relation

(1.9) f(z) ∈ β − UCV ⇔ zf
′
(z) ∈ β − S∗ .

Thus, the classβ − S∗, 0 ≤ β < ∞, is the subclass ofS, consisting of functions that satisfy
the analytic condition

(1.10) Re

{
zf

′
(z)

f(z)

}
> β

∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ , z ∈ U .

Let (f ∗g)(z) denotes the Hadamard product (or convolution) of the functionsf(z) andg(z),
that is, iff(z) is given by (1.1) andg(z) is given by

(1.11) g(z) = z +
∞∑

n=2

bnz
n ,

then

(1.12) (f ∗ g)(z) = z +
∞∑

n=2

anbnz
n = (g ∗ f)(z) .

For αj ∈ C(j = 1, 2, ..., l) andβj ∈ C\{0,−1,−2, ...}(j = 1, 2, ...,m), the generalized
hypergeometric functionlFm(α1, ..., αl; β1, ..., βm; z) is defined by the infinite series

lFm(α1, ..., αl; β1, ..., βm; z) =
∞∑

n=2

(α1)n...(αl)n

(β1)...(βm)n

zn

n!

(1.13) (l ≤ m + 1; l,m ∈ N0 = N ∪ {0}; z ∈ U) ,

where(λ)n is the Pochhamer symbol defined by

(1.14) (λ)n =
Γ(λ + n)

Γ(λ)
=

{
1 (n = 0) ;
λ(λ + 1)...(λ + n− 1) (n ∈ N) .

Corresponding to the function

h(α1, ..., αl; β1, ..., βm; z) = z lFm(α1, ..., αl; β1, ..., βm; z) ,

the Dziok-Srivastava operator ([4], [5], [11] and [12])H l
m(α1, ..., αl; β1, ..., βm) is defined by

the Hadamard product
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4 M. K. AOUF AND G. MURUGUSUNDARAMOORTHY

h(α1, ..., αl; β1, ..., βm)f(z) = h(α1, ..., αl; β1, ..., βm; z) ∗ f(z)

= z +
∞∑

n=2

Γnanz
n(1.15)

where

(1.16) Γn =
(α1)n−1...(αl)n−1

(β1)n−1...(βm)n−1

1

(n− 1)!
.

For brevity, we write

H l
m[α1]f(z) = H l

m(α1, ..., αl; β1, ..., βm)f(z) .

It is easy to see from (1.15) that

(1.17) z(H l
m[α1]f(z))

′
= α1H

l
m[α1 + 1]f(z)− (α1 − 1)H l

m[α1]f(z) .

For β ≥ 0 and−1 ≤ α < 1, we letSl
m([α1]; α, β) denote the subclass ofS consisting of

functionsf(z) of the form (1.1) and satisfying the analytic criterion

(1.18) Re

{
z(H l

m[α1]f(z))
′

H l
m[α1]f(z)

− α

}
> β

∣∣∣∣z(H l
m[α1]f(z))

′

H l
m[α1]f(z)

− 1

∣∣∣∣ , z ∈ U .

We denote byT the subclass ofS consisting of functions of the form

(1.19) f(z) = z −
∞∑

n=2

anz
n (an ≥ 0) .

Further, we define the classT l
m([α1]; α, β) by

T l
m([α1]; α, β) = Sl

m([α1]; α, β) ∩ T .

We note that
(I) T 1

0 ([1]; α, β) = SpT (α, β)

=

{
f(z) ∈ T : Re

{
zf

′
(z)

f(z)
− α

}
> β

∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ ,−1 ≤ α < 1,

β ≥ 0, z ∈ U}(1.20)

The classSpT (α, 1) = SpT (α) was studied by Bharati et al. [1] .
(II ) T 2

1 ([a, 1; c]; α, β) = SpT (a, c; α, β) (Murugusungaramoorthy and Magesh [15])

=

{
f(z) ∈ T : Re

{
z(L(a, c)f(z))

′

L(a, c)f(z)
− α

}
> β

∣∣∣∣z(L(a, c)f(z))
′

L(a, c)f(z)
− 1

∣∣∣∣ ,

−1 ≤ α < 1, β ≥ 0, a > 0, c > 0, z ∈ U} ,̇(1.21)

whereL(a, c) is the Carlson - Shaffer operator [3] .
(III ) H2

1 ([λ + 1, 1; 1]; α, β) = SpT (λ; α, β) (Shams and Kulkarni [23])

=

{
f(z) ∈ T : Re

{
z(Dλf(z))

′

Dλf(z)
− α

}
> β

∣∣∣∣z(Dλf(z))
′

Dλf(z)
− 1

∣∣∣∣ ,

0 ≤ α < 1, β ≥ 0, λ > −1, z ∈ U} ,(1.22)

whereDλ(λ > −1) is the Ruscheweyh derivative operator [21] .
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(IV ) H2
1 ([ν + 1, 1; ν + 2]; α, β) = SpT (ν; α, β)

=

{
f(z) ∈ T : Re

{
z(Jνf(z))

′

Jνf(z)
− α

}
> β

∣∣∣∣z(Jνf(z))
′

Jνf(z)
− 1

∣∣∣∣ ,

−1 ≤ α < 1, β ≥ 0, ν > −1, z ∈ U} ,(1.23)

whereJν(ν > −1) is the generalized Bernardi-Libera-Livingston operator ([2], [10] and [13]).
(V) H2

1 ([2, 1; 2− µ]; α, β) = SpT (µ; α, β)

=

{
f(z) ∈ T : Re

{
z(Ωµ

zf(z))
′

Ωµ
zf(z)

− α

}
> β

∣∣∣∣z(Ωµ
zf(z))

′

Ωµ
zf(z)

− 1

∣∣∣∣ ,

−1 ≤ α < 1, β ≥ 0, 0 ≤ µ < 1, z ∈ U} ,

where

(1.24) Ωµ
zf(z) = Γ(2− µ)zµDµ

z f(z)(0 ≤ µ < 1) ,

whereΩµ
z is the Srivastava-Owa fractional derivative operator ([16] and [18]).

2. COEFFICIENT ESTIMATES

Theorem 2.1.A functionf(z) of the form (1.1) is in the classSl
m([α1]; α, β) if

(2.1)
∞∑

n=2

Cn|an| ≤ 1− α ,

where

(2.2) Cn = [n(1 + β)− (α + β)]Γn

andΓn is defined by (1.16).

Proof. It is suffices to show that

β

∣∣∣∣z(H l
m[α1]f(z))

′

H l
m[α1]f(z)

− 1

∣∣∣∣− Re

{
z(H l

m[α1]f(z))
′

H l
m[α1]f(z)

− 1

}
≤ 1− α .

We have

β

∣∣∣∣z(H l
m[α1]f(z))

′

H l
m[α1]f(z)

− 1

∣∣∣∣− Re

{
z(H l

m[α1]f(z))
′

H l
m[α1]f(z)

− 1

}
≤ (1 + β)

∣∣∣∣z(H l
m[α1]f(z))

′

H l
m[α1]f(z)

− 1

∣∣∣∣
≤

(1 + β)
∞∑

n=2

(n− 1)Γn|an|

1−
∞∑

n=2

Γn|an|
.

This last expression is bounded above by(1− α) if

∞∑
n=2

[n(1 + β)− (α + β)]Γn|an| ≤ 1− α ,

and the proof is complete.
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6 M. K. AOUF AND G. MURUGUSUNDARAMOORTHY

Theorem 2.2.A necessary and sufficient condition forf(z) of the form (1.19) to be in the class
T l

m([α1]; α, β) is that

(2.3)
∞∑

n=2

Cnan ≤ 1− α ,

whereCn is given by (2.2).

Proof. In view of Theorem 2.1, we need only to prove the necessity. Iff(z) ∈ T l
m([α1]; α, β)

andz is real, then (1.18) yields

1−
∞∑

n=2

nΓnanz
n−1

1−
∞∑

n=2

Γnanzn−1

− α ≥ β

∣∣∣∣∣∣∣∣
∞∑

n=2

(n− 1)Γnanz
n−1

1−
∞∑

n=2

Γnanzn−1

∣∣∣∣∣∣∣∣ .

Letting z → 1− along the real axis, we obtain the desired inequality
∞∑

n=2

[n(1 + β)− (α + β)]Γnan ≤ 1− α,−1 ≤ α < 1, β ≥ 0 .

Corollary 2.3. Let the functionf(z) defined by (1.19) be in the classT l
m([α1]; α, β). Then

(2.4) an ≤
(1− α)

Cn

(n ≥ 2) .

The result is sharp for the functionf(z) given by

(2.5) f(z) = z − 1− α

Cn

zn (n ≥ 2) ,

whereCn is defined by (2.2).

3. GROWTH AND DISTORTION THEOREM

Theorem 3.1. Let the functionf(z) defined by (1.19) be in the classT l
m([α1]; α, β). If the

sequence{Cn} is nondecreasing, then

(3.1) |z| − 1− α

(2− α + β)Γ2

|z|2 ≤ |f(z)| ≤ |z|+ 1− α

(2− α + β)Γ2

|z|2 (z ∈ U) .

If the sequence
{

Cn

n

}
is nondecreasing, then

(3.2) 1− 2(1− α)

(2− α + β)Γ2

|z| ≤ |f ′
(z)| ≤ 1 +

2(1− α)

(2− α + β)Γ2

|z| (z ∈ U),

whereCn is defined by (2.2). The result is sharp, with the extremal functionf(z) defined by

(3.3) f(z) = z − 1− α

(2− α + β)Γ2

z2 .

Proof. Let a functionf(z) of the form (1.19) belong to the classT l
m([α1]; α, β). If the sequence

{Cn} is nondecreasing and positive, by Theorem 2.2, we have

(3.4)
∞∑

n=2

an ≤
(1− α)

(2− α + β)Γ2

,
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and if the sequence
{

Cn

n

}
is nondecreasing and positive, by Theorem 2.2, we have

(3.5)
∞∑

n=2

nan ≤
2(1− α)

(2− α + β)Γ2

.

Making use of the conditions (3.4) and (3.5), in conjunction with the definition (1.19), we
readily obtain the assertion (3.1) and (3.2) of 3.1.

4. EXTREME POINTS

In view of the necessary and sufficient conditions of Theorem 2.2, the familyT l
m([α1]; α, β)

is closed under convex linear combinations. This leads to the determination of the extreme
points for the family.

Theorem 4.1.LetCn be defined by (2.2) and let us put

(4.1) f1(z) = z

and

(4.2) fn(z) = z − 1− α

Cn

zn (n ≥ 2)

for −1 ≤ α < 1 andβ ≥ 0. Thenf(z) is in the classT l
m([α1]; α, β) if and only if it can be

expressed in the form :

(4.3) f(z) =
∞∑

n=1

λnfn(z) ,

whereλn ≥ 0(n ≥ 1) and
∞∑

n=1

λn = 1.

Proof. Assume that

f(z) =
∞∑

n=1

λnfn(z) = z −
∞∑

n=2

1− α

Cn

λnz
n .

Then it follows that

(4.4)
∞∑

n=2

Cn

1− α
.
1− α

Cn

λn =
∞∑

n=2

λn = 1− λ1 ≤ 1 .

So by Theorem 2.2,f(z) ∈ T l
m([α1]; α, β).

Conversely, assume that the functionf(z) defined by (1.19) belongs to the classT l
m([α1]; α, β).

Then

(4.5) an ≤
1− α

Cn

(n ≥ 2) .

Setting

(4.6) λn =
Cn

1− α
an (n ≥ 2)

and

(4.7) λ1 = 1−
∞∑

n=2

λn ,

we can see thatf(z) can be expressed in the form (4.3). This completes the proof of Theorem
4.1.
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Corollary 4.2. The extreme points of the classT l
m([α1]; α, β) are the functionsfn(z)(n ≥ 1)

given by Theorem 4.1.

5. RADII OF CLOSE -TO- CONVEXITY , STARLIKENESS AND CONVEXITY

Theorem 5.1.Let the functionf(z) defined by (1.19) be in the classT l
m([α1]; α, β). Then f(z)

is close - to - convex of orderρ (0 ≤ ρ < 1) in |z| < r1, where

(5.1) r1 = inf
n

{
(1− ρ)Cn

n(1− α)

} 1

n− 1 (n ≥ 2) ,

whereCn is defined by (2.2). The result is sharp, with the extremal functionf(z) given by (2.5).

Proof. We must show that

|f ′(z)− 1| ≤ 1− ρ for |z| < r1 ,

wherer1 is given by (5.1). Indeed we find from the definition (1.19) that

|f ′(z)− 1| ≤
∞∑

n=2

nan |z|n−1 .

Thus

|f ′(z)− 1| ≤ 1− ρ

if

(5.2)
∞∑

n=2

(
n

1− ρ
)an |z|n−1 ≤ 1.

But, by Theorem 2.2, (5.2) will be true if

(
n

1− ρ
) |z|n−1 ≤ Cn

1− α
,

that is, if

(5.3) |z| ≤
{

(1− ρ)Cn

n(1− α)

} 1

n− 1 (n ≥ 2) .

Theorem 5.1 follows easily from (5.3).

Theorem 5.2. Let the functionf(z) defined by (1.19) be in the classT l
m([α1]; α, β). Then the

function f(z) is starlike of orderρ (0 ≤ ρ < 1) in |z| < r2, where

(5.4) r2 = inf
n

{
(1− ρ)Cn

(n− ρ)(1− α)

} 1

n− 1 (n ≥ 2),

whereCn is defined by (2.2). The result is sharp, with the extremal functionf(z) given by (2.5).

Proof. It is sufficient to show that∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ 1− ρ for |z| < r2 ,

AJMAA, Vol. 5, No. 1, Art. 3, pp. 1-17, 2008 AJMAA
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wherer2 is given by (5.4). Indeed we find, again from the definition (1.19) that

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤
∞∑

n=2

(n− 1)an |z|n−1

1−
∞∑

n=2

an |z|n−1
.

Thus ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ 1− ρ

if

(5.5)
∞∑

n=2

(
n− ρ

1− ρ

)
an |z|n−1 ≤ 1.

But, by Theorem 2.2, (5.5) will be true if

(
n− ρ

1− ρ
) |z|n−1 ≤ Cn

1− α
,

that is, if

(5.6) |z| ≤
{

(1− ρ)Cn

(n− ρ)(1− α)

} 1

n− 1 (n ≥ 2).

Theorem 5.2 now follows easily from (5.6).

Corollary 5.3. Let the functionf(z) defined by (1.19) be in the classT l
m([α1]; α, β). Then

f(z) is convex of orderρ (0 ≤ ρ < 1) in |z| < r3, where

(5.7) r3 = inf
n

{
(1− ρ)Cn

(n− ρ)(1− α)

} 1

n− 1 (n ≥ 2),

whereCn is defined by (2.2). The result is sharp, with the extremal functionf(z) given by (2.5).

6. A FAMILY OF I NTEGRAL OPERATORS

Theorem 6.1.Let the functionf(z) defined by (1.19) be in the classT l
m([α1]; α, β) and letc be

a real number such thatc > −1. Then the functionF (z) defined by

(6.1) F (z) =
c + 1

zc

z∫
0

tc−1 f(t)dt (c > −1)

also belongs to the classT l
m([α1]; α, β).

Proof. From the representation (6.1) ofF (z), it follows that

F (z) = z −
∞∑

n=2

bnz
n,

where

bn =

(
c + 1

c + n

)
an .
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Therefore, we have
∞∑

n=2

Cnbn =
∞∑

n=2

Cn(
c + 1

c + n
)an

≤
∞∑

n=2

Cnan ≤ 1− α ,

sincef(z) ∈ T l
m([α1]; α, β). Hence, by Theorem 2.2,F (z) ∈ T l

m([α1]; α, β). On the other
hand, the converse is not true. This leads to a radius of univalence result.

Theorem 6.2.Let the functionF (z) = z−
∞∑

n=2

anz
n (an ≥ 0) be in the classT l

m([α1]; α, β), and

let c be a real number such thatc > −1. Then the functionf(z) given by (6.1) is univalent in
|z| < R∗, where

(6.2) R∗ = inf
n

{
(c + 1)Cn

n(c + n(1− α)

} 1

n− 1 (n ≥ 2) ,

The result is sharp.

Proof. Form (6.1), we have

f(z) =
z1−c(zcF (z))′

c + 1
= z −

∞∑
n=2

(
c + n

c + 1

)
anz

n.

In order to obtain the required result, it suffices to show that

|f ′(z)− 1| < 1 wherever |z| < R∗,

whereR∗ is given by (6.2). Now

|f ′(z)− 1| ≤
∞∑

n=2

n(c + n)

(c + 1)
an |z|n−1 .

Thus|f ′(z)− 1| < 1 if

(6.3)
∞∑

n=2

n(c + n)

(c + 1)
an |z|n−1 < 1 .

But Theorem 2.2 confirms that

(6.4)
∞∑

n=2

Cn

1− α
an ≤ 1.

Hence (6.4) will be satisfied if

n(c + n)

(c + 1)
|z|n−1 <

Cn

1− α
,

that is, if

(6.5) |z| <
{

(c + 1)Cn

n(c + n)(1− α)

} 1
n−1

(n ≥ 2) .

Therefore, the functionf(z) given by (6.1) is univalent in|z| < R∗. Sharpness of the result
follows if we take

(6.6) f(z) = z − (c + n)(1− α)

(c + 1)Cn

zn(n ≥ 2) .
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7. M ODIFIED HADAMARD PRODUCTS

Let the functionsfν(z)(ν = 1, 2) be defined by

(7.1) fν(z) = z −
∞∑

n=2

an,νz
n(an,ν ≥ 0; ν = 1, 2) .

The modified Hadamard product off1(z) andf2(z) is defined by

(7.2) (f1 ∗ f2)(z) = z −
∞∑

n=2

an.1an,2z
n.

Theorem 7.1.Let each of the functionsfν(z) (ν = 1, 2)defined by (7.1) be in the classT l
m([α1]; α, β).

If the sequence{Cn} is nondecreasing, then(f1 ∗ f2)(z) ∈ T l
m([α1]; δ([α1], α, β), β), where

(7.3) δ([α1], α, β) = 1− (1 + β)(1− α)2

(2− α + β)2Γ2 − (1− α)2
.

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [22], we need to find the
largestδ = δ([α1], α, β) such that

(7.4)
∞∑

n=2

[n(1 + β)− (δ + β)]Γn

1− δ
an.1an,2 ≤ 1.

Since

(7.5)
∞∑

n=2

[n(1 + β)− (α + β)]Γn

1− α
an.1 ≤ 1

and

(7.6)
∞∑

n=2

[n(1 + β)− (α + β)]Γn

1− α
an.2 ≤ 1,

by the Cauchy-Schwarz inequality, we have

(7.7)
∞∑

n=2

[n(1 + β)− (α + β)]Γn

1− α

√
an.1an.2 ≤ 1.

Thus it is sufficient to show that

(7.8)
[n(1 + β)− (δ + β)]Γn

1− δ
an.1an.2 ≤

[n(1 + β)− (α + β)]Γn

1− α

√
an.1an.2(n ≥ 2),

that is, that

(7.9)
√

an.1an.2 ≤
[n(1 + β)− (α + β)](1− δ)

[n(1 + β)− (δ + β)](1− α)
(n ≥ 2).

Note that

(7.10)
√

an.1an.2 ≤
(1− α)

[n(1 + β)− (α + β)]Γn

(n ≥ 2).
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Consequently, we need only to prove that

(7.11)
1− α

[n(1 + β)− (α + β)]Γn

≤ [n(1 + β)− (α + β)](1− δ)

[n(1 + β)− (δ + β)](1− α)
(n ≥ 2),

or, equivalently, that

(7.12) δ ≤ 1− (n− 1)(1 + β)(1− α)2

[n(1 + β)− (α + β)]2Γn − (1− α)2
(n ≥ 2).

Since

(7.13) Φ(n) = 1− (n− 1)(1 + β)(1− α)2

[n(1 + β)− (α + β)]2Γn − (1− α)2

is an increasing function ofn(n ≥ 2), letting n = 2 in (7.13), we obtain

(7.14) δ ≤ Φ(2) = 1− (1 + β)(1− α)2

(2− α + β)2Γ2 − (1− α)2
,

which proves the main assertion of Theorem 7.1.
Finally, by taking the functionsfν(z)(ν = 1, 2) given by

(7.15) fν(z) = z − 1− α

(2− α + β)Γ2

z2(ν = 1, 2),

we can see that the result is sharp.

Proceeding as in the proof of Theorem 7.1, we get

Theorem 7.2. Let the function f1(z) defined by (7.1) be in the classT l
m([α1]; α, β) and the

function f2(z) defined by(7.1) be in the classT l
m([α1]; γ, β). If the sequence{Cn} is nonde-

creasing, then(f1 ∗ f2)(z) ∈ T l
m([α1]; ζ([α1], α, γ, β), β), where

(7.16) ζ([α1], α, γ, β) = 1− (1 + β)(1− α)(1− γ)

(2− α + β)(2− γ + β)Γ2 − (1− α)(1− γ)
.

The result is the best possible for the functions

(7.17) f1(z) = z − 1− α

(2− α + β)Γ2

z2

and

(7.18) f2(z) = z − 1− γ

(2− γ + β)Γ2

z2 .

Theorem 7.3.Let the functionsfν(z) (ν = 1, 2) defined by (7.1) be in the classT l
m([α1]; α, β).

If the sequence{Cn} is nondecreasing. Then the function

(7.19) h(z) = z −
∞∑

n=2

(a2
n,1 + a2

n,2)z
n

belongs to the classT l
m([α1];=([α1], α, β), β), where

(7.20) =([α1], α, β) = 1− 2(1 + β)(1− α)2

(2 + β − α)2Γ2 − 2(1− α)2
.

The result is sharp for the functionsfν(z) defined by (7.15).
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Proof. By virture of Theorem 2.2, we obtain

(7.21)
∞∑

n=2

{
[n(1 + β)− (α + β)]Γn

1− α

}2

a2
n,1 ≤

{
∞∑

n=2

[n(1 + β)− (α + β)]Γn

1− α
an,1

}2

≤ 1

and

(7.22)
∞∑

n=2

{
[n(1 + β)− (α + β)]Γn

1− α

}2

a2
n,2 ≤

{
∞∑

n=2

[n(1 + β)− (α + β)]Γn

1− α
an,2

}2

≤ 1 .

It follows from (7.21) and (7.22) that

(7.23)
∞∑

n=2

1

2

{
[n(1 + β)− (α + β)]Γn

1− α

}2

(a2
n,1 + a2

n,2) ≤ 1 .

Therefore, we need to find the largest=([α1], α, β) such that

(7.24)
[n(1 + β)− (=+ β)]Γn

1−=
≤ 1

2

{
[n(1 + β)− (α + β)]Γn

1− α

}2

(n ≥ 2),

that is,

(7.25) = ≤ 1− 2(n− 1)(1 + β)(1− α)2

[n(1 + β)− (α + β)]2Γn − 2(1− α)2
(n ≥ 2) .

Since

(7.26) D(n) = 1− 2(n− 1)(1 + β)(1− α)2

[n(1 + β)− (α + β)]2Γn − 2(1− α)2

is an increasing function ofn(n ≥ 2), we readily have

(7.27) = ≤ D(2) = 1− 2(1 + β)(1− α)2

(2 + β − α)2 Γ2 − 2(1− α)2
,

and Theorem 7.3 follows at once.

8. PROPERTIES ASSOCIATED WITH GENERALIZED FRACTIONAL CALCULUS

OPERATORS

In terms of the Gauss hypergeometric function :

(8.1) 2F1(δ, µ; ν; z) =
∞∑

n=0

(δ)n(µ)n

(ν)n

zn

n!

(z ∈ U ; δ, µ, ν ∈ C; ν 6= 0,−1,−2, ...) ,

where (again)(λ)n denotes the Pochhammer symbol defined in (1.14), the generalized fractional
calculus operatorsIµ,ν,η

0,z andJµ,ν,η
0,z are defined below (cf., e.g., [17] and [25]).

Definition 8.1. (Generalized Fractional Integral operator). The generalized fractional integral
of orderµ is defined, for a functionf(z), by

(8.2) Iµ,ν,η
0,z f(z) =

z−µ−ν

Γ(µ)

z∫
0

(z − ζ)µ−1
2F1(µ + ν;−η; µ; 1− ζ

z
) . f(ζ)dζ

(µ > 0; ε > max {0, ν − η} − 1) ,
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wheref(z) is an analytic function in a simply-connected region of thez-plane containing the
origin, and the multiplicity of(z − ζ)µ−1 is removed by requiringlog(z − ζ) to be real when
(z − ζ) > 0, provided further that

(8.3) f(z) = O(|z|ε) (z → 0) .

Definition 8.2. (Generalized Fractional Derivative Operator). The generalized fractional deriv-
ative of orderµ is defined, for a functionf(z), by

(8.4) Jµ,ν,η
0,z f(z) =



1

Γ(1− µ)

d

dz

{
zµ−ν

z∫
0

(z − ζ)−µ
2F1(ν − µ, 1− η; 1− µ ;

1− ζ
z
)f(ζ)dζ

}
(0 ≤ µ < 1) ,

dn

dzn
Jµ−n,ν,η

0,z f(z) (n ≤ µ < n + 1; n ∈ N)

(ε > max {0, ν − η} − 1) ,

wheref(z) is constrained, and the multiplicity of(z − ζ)µ−1 is removed, as in Definition 8.1,
andε is given by the order estimate (8.3).

(8.5) f(z) = O(|z|ε) (z → 0) .

It follows from Definition 8.1 and Definition 8.2 that

(8.6) Iµ,−µ,η
0,z f(z) = D−µ

z f(z) (µ > 0) ,

and

(8.7) Jµ,µ,η
0,z f(z) = Dµ

z f(z) (0 ≤ µ < 1) ,

whereDµ
z (µ ∈ R) is the fractional operator considered by Owa [16] and (subsequently) by Owa

and Srivastava [18] and Srivastava and Owa [24]. Furthermore, in terms of Gamma functions,
Definitions 8.1 and 8.2 readily yield.

Lemma 8.1. [25] . The generalized fractional integral and the generalized fractional derivative
of a power function are given by

(8.8) Iµ,ν,η
0,z zρ =

Γ(ρ + 1)Γ(ρ− ν + η + 1)

Γ(ρ− ν + 1)Γ(ρ + µ + η + 1)
zρ−ν

(µ > 0; ρ > max{0, ν − η} − 1) ,

and

(8.9) Jµ,ν,η
0,z zρ =

Γ(ρ + 1)Γ(ρ− ν + η + 1)

Γ(ρ− ν + 1)Γ(ρ− µ + η + 1)
zρ−ν

(0 ≤ µ < 1; ρ > max{0, ν − η} − 1) .

Theorem 8.2. Let the functionf(z) defined by (1.19) be in the classT l
m([α1]; α, β). If the

sequence{Cn} is nondecreasing, then

Γ(2− ν + η)

Γ(2− ν)Γ(2 + µ + η)
|z|1−ν

{
1− 2(1− α)(2− ν + η)

(2− ν)(2 + µ + η)(2− α + β)Γ2

|z|
}

≤
∣∣Iµ,ν,η

0,z f(z)
∣∣ ≤
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(8.10)
Γ(2− ν + η)

Γ(2− ν)Γ(2 + µ + η)
|z|1−ν

{
1 +

2(1− α)(2− ν + η)

(2− ν)(2 + µ + η)(2− α + β)Γ2

|z|
}

(z ∈ U0; µ > 0; max {ν, ν − η,−µ− η} < 2; ν(µ + η) ≤ 3µ)

and
Γ(2− ν + η)

Γ(2− ν)Γ(2− µ + η)
|z|1−ν

{
1− 2(1− α)(2− ν + η)

(2− ν)(2 + µ + η)(2− α + β)Γ2

|z|
}

≤
∣∣Jµ,ν,η

0,z f(z)
∣∣

(8.11)
Γ(2− ν + η)

Γ(2− ν)Γ(2− µ + η)
|z|1−ν

{
1 +

2(1− α)(2− ν + η)

(2− ν)(2 + µ + η)(2− α + β)Γ2

|z|
}

(z ∈ U0; 0 ≤ µ < 1; max {ν, ν − η, µ− η} < 2; ν(µ− η) ≥ 3µ) ,

where

(8.12) U0 =

{
U (ν ≤ 1)
U\{0} (ν > 1) .

Each of these results is sharp for the functionf(z) defined by (3.3).

Proof. Making use of the assertion (8.8) of Lemma 8.1, we find from (1.19) that

F (z) =
Γ(2− ν)Γ(2 + µ + η)

Γ(2− ν + η)
zν Iµ,ν,η

0,z f(z)

= z −
∞∑

n=2

Φ(n)anz
n ,(8.13)

where, for convenience,

(8.14) Φ(n) =
(1)n(2− ν + η)n−1

(2− ν)n−1(2 + µ + η)n−1

(n ∈ N\{1}) .

The functionΦ(n) defined by (8.14) can easily be seen to be nonincreasing under the parametric
constraints stated already with (8.10), and we thus have

(8.15) 0 < Φ(n) ≤ Φ(2) =
2(2− ν + η)

(2− ν)(2 + µ + η)
(n ∈ N\{1}) .

Now the assertion (8.10) of Theorem 8.2 would follow readily from (3.4), (8.13) and (8.15).
The assertion (8.11) of Theorem 8.2 can be proven similarly by noting from (8.9) that

G(z) =
Γ(2− ν)Γ(2− µ + η)

Γ(2− ν + η)
zν Jµ,ν,η

0,z f(z)

= z −
∞∑

k=2

Ψ(n)anz
n ,(8.16)

where

0 < Ψ(n) =
(1)n(2− ν + η)n−1

(2− ν)n−1(2− µ + η)n−1

≤ Ψ(2) =
2(2− ν + η)

(2− ν)(2− µ + η)
(n ∈ N\{1}) ,(8.17)

under the parametric constraints stated already with (8.11).
Finally, by observing that the equalities in each of the assertions (8.10) and (8.11) are attained

by the functionf(z) given by (3.3), we complete the proof of Theorem 8.2.
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In view of the relationships (8.6) and (8.7), by settingν = −µ andν = µ in our assertions
(8.10) and (8.11), respectively, we obtain

Corollary 8.3. Let the functionf(z) defined by (1.19) be in the classT l
m([α1]; α, β). If the

sequence{Cn} is nondecreasing, then

|z|1+µ

Γ(2 + µ)

{
1− 2(1− α)

(2 + µ)(2− α + β)Γ2

|z|
}
≤

∣∣D−µ
z f(z)

∣∣ ≤
(8.18)

|z|1+µ

Γ(2 + µ)

{
1 +

2(1− α)

(2 + µ)(2− α + β)Γ2

|z|
}

(z ∈ U ; µ > 0) .

and
|z|1−µ

Γ(2− µ)

{
1− 2(1− α)

(2− µ)(2− α + β)Γ2

|z|
}
≤

∣∣D−µ
z f(z)

∣∣ ≤
(8.19)

|z|1−µ

Γ(2− µ)

{
1 +

2(1− α)

(2− µ)(2− α + β)Γ2

|z|
}

(z ∈ U ; 0 ≤ µ < 1) .

Each of these results is sharp for the functionf(z) given by (3.3).
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