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ABSTRACT. Inthis paper we introduce the clag§(3) of functionsf(z) = Az 7P+ 3~ (=1)" 'a, 2"
n=p
regular and multivalent in thA* = {z : 0 < |z| < 1} and satisfying

()

whereJ is a linear operator.
Coefficient inequalities, distortion bounds, weighted mean and arithmetic mean of functions
for this class have been obtained.
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1. INTRODUCTION

Let ¥, be the class of functions of the form
(1.2) flz)=Az"P 4+ Zanz”, A>0
n=p

that are regular in the punctured disk = {z : 0 < |z| < 1} ando, be the subclass df,
consisting of functions with alternating coefficients of the type

(1.2) flz) =AzP + i(—l)"‘lanz”, a, >0, A>0.
Let 7
(1.3) Z;(ﬁ):{fEEP:Re (%) <—ﬁ,0§ﬁ<p}

and leto;(3) = ¥(3) N o, where

(1.4) T(F() = (v —p+ 1) / (6?) f (uz)du, p <

is a linear operator.
With a simple calculation we obtain

Az7P + i (—1)nt (3;—211) a,z"  f(2) € 0,
(1.5) J(f(2)) = =
Az7P + Z_: @J:ZE) an2" f(z) € &,

For more details about meromorphiwalent functions, we can see the recent works of many
authors in[[1, 2, 3].

Also Uralegaddi and Ganidi[4] worked on meromorphic univalent functions with alternating
coefficients.

2. COEFFICIENT ESTIMATES

Theorem 2.1.Let f(z) = Az P+ > a,2" € 5, If
n=p

o0

@) >4 9) (25 ) el < A9

n=p

thenf(z) € 35(5).
Proof. It is enough to show that

g
M = - < 1for|z| < 1.
2T f(2)]
Ty — (=20
But by[1.5
—pAz P4+ > n <7/;Zﬂ) 2" +pAz7P 4+ > p (;’;iﬁ) n 2"
M — n=p n=p
—pAz P+ S n <§;gﬁ) anz" — (p —28)AzP — > (p — 20) (g;gﬁ) 2"
n=p n=p
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> [0+ 9) (222)] el

n=p
J— o0 _ 1 .
24(p =) = X (n = p+20) (325
The last expression is less than or equal to 1 provided

[e.9] o0

S [0 (2250 ) ] ol < 240 - 9 = S0 - 9+ 28) (72 )

n=p n=p
which is equivalent to

S y-p+
T ) g, < A
S (T ol < 409
which is true by[(2.]1) so the proof is complege.
The converse of the Theor.l is also true for functions (1¥), wherep is an odd number.

Theorem 2.2. A functionf(z) in o, is in o;(3) if and only if

S y-p+1
(2.2) nz::p(n + ) (m) an < A(p— 8).

Proof. According to Theorer 2]1 it is enough to prove the “only if” part. Suppose that

/ —Apz7P + i n(—1)nt (L2 ) g,,2n
2.3) Re (M) — Re n=p <v+ +1> <_8
Azr + z< 1t (2525 ) e

By choosing values of on the real axis so th (gff(;) is real and clearing the denominator
in (2.3) and letting: — —1 through real values we obtain

—~ (v—p+ y—p+1
Ap — _ A
b nzpn(’w—n—l—l) ( +Z<7+n+1) )

which is equivalent to

o0

S+ 0) (225 ) 0, < Alp - ).

o y+n+1
|
Corollary 2.3. If f(2) € o;,() then
(2.4) anéA(p_ﬁ)(7+n+1)forn:p,p+1,---

(n+ B —p+1)
The result is sharp for the functions of the type

Ap-PBly+n+1) ,

(2.5) Jn(2) = A ) L )
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3. DISTORTION BOUNDS AND IMPORTANT PROPERTIES OF o7} (f3)

In this section we obtain distortion bounds for functions in the clg$s) and prove some
important properties of this class, wherées an odd number.

Theorem 3.1.Let f(z) = Az7P+ Y (—1)""anz", a, > 0 beinthe class’;(5) ands > v+1

n=p
then
) o, Alp—P)
3.1 Ap P — 2 P & < Ap P 2\ P op
(3.1) r 7_p+17“_|f(z)|_ r +7_p+17“
Proof. Since > v+ 1 so f’fl>1then
n+ 3
(v—p+1 Za Z(7+n+1)(7 p+1a, < Alp - 5)
We have
F)] = 4277+ ) (1) a2
n=p
A S A Alp — )
< = P < p
= ;pan e (y=pt 1)
Similarly,
A G S A Alp—p)
> — — "> P > p
o= Z . Z— po—
|

Theorem 3.2. Let
f(z) = Az p—i—Zanz andg(z) = Az p—i—z )b, 2"
n=p

be in the class;(3) then the weighted mean gfand g defined by

Ha- D) + A+ De)

Wi(z) = 3

is also in the same class.

Proof. Since f andg belong too;() so by [2.2) we have

S (n+ ) (528 0w < A - ),
(3.2) n=p
x

() (355 ) bo < A= 1),
After a simple calculation we obtain

W](Z) — Az_p+z |: 5 jan+ +jbn:| (_1)n—lzn.

2
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But
e (22250) [t 50
_ (%) ni;( ) <77_++:11)) an, + (1%) g(wrﬁ) (7711;4;11» bn

() w0+ () -0 = A - o)
Hence by Theorefm 2.&/;(2) € o;(6)- 1
Theorem 3.3. Let

fr(z Az_p—l—z )" g k2" €o,(f),k=1,2,---,m
then the arithmetic mean g¢f(z) deflned by

(3.3) F&) =3 fi(2)

is also in the same class.
Proof. Sincef;(z2) € o;(6) so by [2.2) we have

After a simple calculation we obtain

1 m o
F(z) = . Z (Azp + Z(—l)”lan,kz”>
k=1 n=p
oo 1 m
T (a Z) .
n=p k=1

But
i —p+1 1 & 14>> 1
> (n+8) <3+—§++1> (EZ“W) ZAp B) = A(p— )
n=p k=1

which in view of Theorem 2]2 yields the proof of Theorem| &3.
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