The Australian Journal of Mathematical Analysis and Applications


Home News Editors Volumes RGMIA Subscriptions Authors Contact

ISSN 1449-5910  

 

You searched for xie
Total of 17 results found in site

6: Paper Source PDF document

Paper's Title:

A Note on Calderon Operator

Author(s):

Chunping Xie

Department of Mathematics,
Milwaukee School of Engineering,
1025 N. Broadway,
Milwaukee, Wisconsin 53202,
U. S. A
.

E-mail: xie@msoe.edu

URL: http://www.msoe.edu/people/chunping.xie

Abstract:

We have shown that the Calderon operator is bounded on Morrey Spaces on R+. Also under certain conditions on the weight, the Hardy operator, the adjoint Hardy operator, and therefore the Caldern operator are bounded on the weighted Morrey spaces.



5: Paper Source PDF document

Paper's Title:

Ap Functions and Maximal Operator

Author(s):

Chunping Xie

Department of Mathematics,
Milwaukee School of Engineering,
1025 N. Broadway,
Milwaukee, Wisconsin 53202,
U. S. A
.

E-mail: xie@msoe.edu

URL: http://www.msoe.edu/people/chunping.xie

Abstract:

The relationship between Ap functions and Hardy-Littlewood maximal operator on Lp,λ(w), the weighted Morrey space, has been studied. Also the extropolation theorem of Lp,λ(w) has been considered.



5: Paper Source PDF document

Paper's Title:

Commutators of Hardy Type Operators

Author(s):

Chunping Xie

Department of Mathematics,
Milwaukee School of Engineering,
1025 N. Broadway,
Milwaukee, Wisconsin 53202,
USA.

E-mail: xie@msoe.edu
URL: http://www.msoe.edu/people/chunping.xie

Abstract:

The note deals with commutaors of the Hardy operator, Hardy type operators on Morrey spaces on R+. We have proved that the commutators generated by Hardy operator and Hardy type operators with a BMO function b are bounded on the Morrey spaces.



1: Paper Source PDF document

Paper's Title:

Ostrowski Type Inequalities for Lebesgue Integral: a Survey of Recent Results

Author(s):

Sever S. Dragomir1,2

1Mathematics, School of Engineering & Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
E-mail: sever.dragomir@vu.edu.au

 
2DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL: http://rgmia.org/dragomir 

Abstract:

The main aim of this survey is to present recent results concerning Ostrowski type inequalities for the Lebesgue integral of various classes of complex and real-valued functions. The survey is intended for use by both researchers in various fields of Classical and Modern Analysis and Mathematical Inequalities and their Applications, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.


Search and serve lasted 0 second(s).


2004-2021 Austral Internet Publishing