The Australian Journal of Mathematical Analysis and Applications


Home News Editors Volumes RGMIA Subscriptions Authors Contact

ISSN 1449-5910  

 

You searched for singhv
Total of 6 results found in site

2: Paper Source PDF document

Paper's Title:

A New Relaxed Complex-valued b-metric Type and Fixed Point Results

Author(s):

P. Singh, V. Singh and T. C. M. Jele

Department of Mathematics, University of KwaZulu-Natal,
Private Bag X54001, Durban,
South Africa.
E-mail: singhp@ukzn.ac.za
singhv@ukzn.ac.za
thokozani.jele@nwu.ac.za

Abstract:

In this paper, we study the existence and uniqueness of fixed point in complex valued b-metric spaces and introduce a new relaxed α, β Complex-valued b-metric type by relaxing the triangle inequality and determine whether the fixed point theorems are applicable in these spaces.



2: Paper Source PDF document

Paper's Title:

A Generalization of a Partial b-metric and Fixed Point Theorems

Author(s):

Pravin Singh and Virath Singh

Department of Mathematics, University of KwaZulu-Natal,
Private Bag X54001, Durban,
South Africa.
E-mail: singhp@ukzn.ac.za
singhv@ukzn.ac.za

Abstract:

The purpose of this paper is to introduce the concept of a Partial α, β b-metric as a generalization of a partial b-metric and prove theorems for some contractive type mapping.



1: Paper Source PDF document

Paper's Title:

Oblique Projectors from the Simpson Discrete Fourier Transformation Matrix

Author(s):

P. Singh and V. Singh

School of Mathematics, Computer Science and Statistics,
University of Kwazulu-Natal,
Private Bag X54001, Durban 4001,
South Africa.
E-mail: singhp@ukzn.ac.za, singhv@ukzn.ac.za

Abstract:

In this paper we examine the projectors of the Simpson Discrete Fourier Transform matrix of dimension two modulus four and show how they decompose the complex vector space into a direct sum of oblique eigenspaces. These projection operators are used to define a Simpson Discrete Fractional Fourier Transform (SDFRFT).



1: Paper Source PDF document

Paper's Title:

A New Relaxed b-metric Type and Fixed Point Results

Author(s):

P. Singh, V. Singh and Thokozani Cyprian Martin Jele

Department of Mathematics,
University of KwaZulu-Natal,
Private Bag X54001, Durban,
South Africa.
E-mail: singhp@ukzn.ac.za, singhv@ukzn.ac.za, thokozani.jele@nwu.ac.za

Abstract:

The purpose of this paper is to introduce a new relaxed α, β b-metric type by relaxing the triangle inequality. We investigate the effect that this generalization has on fixed point theorems.


Search and serve lasted 1 second(s).


2004-2021 Austral Internet Publishing