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ABSTRACT. In this paper we examine the projectors of the Simpson Discrete Fourier Transform
matrix of dimension two modulus four and show how they decompose the complex vector space

into a direct sum of oblique eigenspaces. These projection operators are used to define a Simpson
Discrete Fractional Fourier Transform (SDFRFT)
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2 P. SNGH AND V. SINGH

1. INTRODUCTION
The Simpson DFT matrix is defined by [4]

(1.1) U:%[i _;BQ}P

where the(Z x &) matrix A is defined by

(1.2) Ay =w fori,j=0,1,---, % -1

the matrixD = diag(l,w, - - - ,w%‘l) wherew = e~ %', the(N x N) permutation matri®P is
defined by its components;»;_; = 1 and Pys;2; = 1 for j = 0,1, , & — 1. The matrix

U is simple or diagonalizable since its minimal polynomial has linear elementary divisors,
furthermore it has eight distinct eigenvalues [6]. The Simpson Discrete Fourier Transform of a
vectorf = [£(0), f(1),---, f(N —1)]T € C¥ maybe written as

(1.3) Uf = Fy + Fy,
where

81
(1.4) F(k) = 2 3w f(2))

=0
and

81

(15) Fi(K) = 5 D2k () +1),

fork=0,1,--- ,N — 1.

From the Spectral theorem for matrices[2] it follows that if\) is a function defined on the
spectrunmy (U) of U andp () is the interpolating polynomial of minimum degree determined
by the values of. ono (U) thenp (U) = h (U) where

(1.6) P = L (A h(\)
and

. : (A_)‘S)
(1.7) L) =]] )

—_

vl

S#EN

are the Lagrange basis polynomialskIf\) = 1 we obtain

(1.8) 1= 1, ()

from which the resolution of the identity matrix follows

8
(1.9) 1= 1,(U)

If h (\) = X\ we obtain a decomposition of the matrix
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Eigenvalue | Multiplicity

)\10:7’1 ml():% [m+1—cos (%)]
)\12 = -1 mio = % [m + 1 4+ cos (%)}

A =11 my = % [m — sin (_)]

)\13 = —iTl mis = % [m + sin (%)}
)\20:7’2 mgozé [m+1+cos (%)}
)\22 = —T9 Moo = % [m + 1 — cos (%)]

)\21 = Z.TZ mo1 = % |:m + Sin (m)}

)\23 = —iTQ Moz — % [m — sin (M)]

Table 2.1: Eigenvalue decomposition

8 8
(1.10) U=> AL, (U)=> \E,
n=1 n=1

whereE,, = [, (U) are the projection operators onto the nullspA€€U — \,I). By the term
projection we mean a matrix that is idempotent.

2. OBLIQUE PROJECTIONS

An orthogonal projection is Hermitian, hence its nullspace is orthogonal to the range. Oblique
projections are those projections that are not orthogonal. Denote the eigenvalues oflmatrix
by A, and their corresponding multiplicities by, p = 1,2 : [ = 0,1,2,3. The eigenvalue

decomposition of matriXJ is summarized in table [1[6]. wherg = ‘/TN 9+ V17, ry =

@\/9 — /17 andN = 4m + 2. In accordance with the notation in table 1 we shall label the
projection operators ds,; corresponding td,,; and denote its range, equivalently the nullspace
by Ny = N (U = A\u), p=0,1andl = 0,1,2,3. The projectorE?;, = E,,; have eigenvalues

0 and1 and hence are rank deficient furtherm&gE,,,, = 0 if p # m andl # n. The rank

of E,; is the same as the multiplicity of the eigenvaljg. SinceE,, # E;, as a consequence

of U # U* it follows that these are oblique projection operatdrs[3]. The analysis of these
constitutent matrices df provides an insight into the decomposition of the sp@te Define

Cx to be the subspace @f" consisting of all even vectors. L& be aN x (4 + 1) whose
columns comprise of the basis vectors of an arbitrary orthogonal baSis dhe rangeR (Px)

of the orthogonal projection
(2.1) P =B (B"B) ' B’
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is Cg. HenceCY = Cg @ C,, whereC, denotes the nullspack’(Pz) consisting of all odd
vectors.
Consider the projection operator
(U + rI) (U% — r21) (U% + r21) (U? + ri)
4ri (r{ —r3)

obtained from[(1]7) and define the odd annhilator operatdry
(2.3) Zs = (U +721) (U2 +771) .

(2.2) E =

Theorem 2.1. For everyf € CV, Zf is even.

Proof. The even indexed components satisfy
(2.4)  Zgf (2k) = U (2k) + (r] + r3) U (2k) + rirs f (2K)

(2.5) - %NQ [f (2k) + f(—2k)] — SNz {f (2k:+ N) +f (—2k+ g)}

where [2.5) is obtained fronji (2.4) using the duality propefty[5]. Similarly the odd indexed
components satisfy
(2.6)Zef (2 + 1)

8

_gNz[f(2k+1)+f(—2k—1)]—3N2 [f (2k+1+N>+f(—2k;—1+g>].

Clearly Zef (—2k) = Zgf (2k) and alsoZgf (—2k — 1) = Zgf (2k + 1) which implies that
Z:f is even. Furthermore ff = f; € C is odd thenZ:f, = 0 ThusZg annihilates every odd
vector. This also applies to every eigenvector corresponding to purely imaginary eigenvalues
since the latter is always odd[6]. The effect@f in -) is to mapf € CV into the even
subspac&€;. The effect of(U + r I) (U? — r21) is to mapZf into the even subspac¥,, or
generate an eigenvector corresponding;toThe denominator irf (22) is a normalizing factor
that ensures thdi, is a projection operatos

Theorem 2.2.1f f € NV (Zg) thenf is odd.
Proof. If Zzf = 0 then from [2.5) and (2]7) it follows that

2.7 f(2k:)+f(—2k)=2 :f (2k;+ N)+f(—2k+g)}

3
(e g ) s (-2mo14 5]

since2k + % is odd, replacé: by k + 72 in (2.8) to obtain

and

(28)  f(2k+1)+ f(—2k—1)=

OAI'—‘

(2.9) f (2k+ N) +f (—2k:+ g) = % [f (2k) + f (—2k)]
Equations[(2]7) andl (2.9) imply that
(2.10) f(2k) + f(—=2k) =0.

Since2k + 1 + & is even one may repladeby k + 252 in (2.7) yielding

(2.11) f(2k:+1+N> +f(—2k;—1+g) zg[f(2k+1)+f(—2k:—1)].
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Equations[(2)8) andl (2.1.11) imply that

(2.12) fRE+1)+ f(=2k—1)=0
From (2.10) and (2.12) we conclude that

(2.13) f(=k)=—f (k).

|

From theorem 1 and theorem 2 we conclude #fdZz) = C,, which has dimensioff — 1.
The rangeR (Zg) = Cg has dimensiorﬁl + 1, hence ranKZg) is % + 1. FurthermoréZ; has
eigenvalues:

i) 2r? (r? + r3) of multiplicity m + 1 which it inherits from the eigenvalues gfr, of U

ii) 2r2 (r? + r3) of multiplicity m + 1 which it inherits from the eigenvalues &fr, of U

iif) 0 of multiplicity 2m which it inherits from the eigenvalues éfir, and+ir, of U.

Consider the projector operator

(U + ird) (U? 4 731) (U? — r}1) (U2 — 131)

~ti (=)

(2.14) Ei =

Define the even annhilator operator
(2.15) Zo = (U — riI) (U* — r31)
Theorem 2.3. For everyf € CV, Zf is odd.

Proof.
(2.16)Zof (2k) = U (2k) — (r] + r3) Uf (2k) + rirs f (2k)

= [ g (- () er (e g))

(2.17) Zof 2k +1) = U (2k+1) — (r] +r3) U (2k + 1) +rird f (2k + 1)
= N? E (f 2k +1) — f(—2k - 1)) —g (—f (—Qk—l— ﬂ)

) |

which follows from the duality property. Clearnf (—2k) = —Zf (2k) andZf (—2k — 1) =
—Zof (2k + 1) which implies thatZqf is odd. Furthermore if = fz € CV is even then
ZOfE - 0 or

(2.18) (U2 —+21) (U% - r31) £ = 0.
1

ThusZ, annihilates every even vector. Since every eigenvector corresponding to real eigen-
values is real it follows that every eigenvector sati52.18). The eff@tisfto mapf € CV
into the odd subspad®,. The effect of U? + ir,I) (U? + r31) is to mapZ,f into the odd sub-
space\;; or to generate an eigenvector correspondingr{o The denominator irf (2.14) is a
normalizing factor that ensures tHat; is a projection operator. An analysis of the remaining
projection operators reveals tH&d is a factor ofE,;, p = 1, 2:l = 0, 2 andZ, is a factor ofE,,,
p=121=1,3.
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Theorem 2.4.1f f € N (Z,) thenf is even.
Proof. If Zyf = 0 then from [2.1]7) and (2.18) it follows that

2.19) rem -2 =3 |5 (245 ) - s (2= 5 )]

@20)  fee+n-fi-m-n-g|f (e ) - r(-2-1-3))]
Replacingk by k + 72 in (2.2Q) and combining the result with (2]19) one can show that
(2.21) F(2K) — f(—2k) =0

Replacingk by & + 252 in (2.19) and combining the result with (2]20) one can show that
(2.22) f2k+1)— f(—=2k—1)=0

|

A similar procedure was used in proving theorem 2. This implies fhat C;. Thus
N (Zo) = Cg of dimensionZ + 1 andR (Zy) = C, of dimensiony — 1 which imply that
rank ofZ, is % — 1. Furthermoré’Z, has eigenvalues:

i) 2r? (r? + r3) of multiplicity m which it inherits from the eigenvalues &fir; of U

i) 2r2 (r? + r3) of multiplicity m which it inherits from the eigenvalues gfir, of U

iif) 0 of multiplicity 2m + 2 which it inherits from the eigenvalues éfr; and+r, of U

3. STRUCTURAL DECOMPOSITION

The spac&” is fragmented into four even subspadés,p = 1,2:1 = 0, 2 using the oblique
projection operator&,;,p = 1,2:1 = 0,2 and into four odd subspacé$,p = 1,2: [ = 1,3
using the oblique projection operatdes; p = 1,2: [ = 1,3. This is depicted in the figure 1.
HenceCi = Ny @ Nia ® Ny ® Ny, andCy = Nyp @ Nis S Nay D Nos.

Theorem 3.1. The projection matricek,;, p =1,2: 1 =0, 1,2, 3 are real.

Proof. We prove the result foE,, defined in|(2.144). Lef € CV be an arbitrary vector then
(U + irll) (U2 + T%I) Zof

iG] =)
ConjugatingE;; and operating offi we obtain
(T = iriT) (T2 + 131) Zof

Arji (rf —r3)

Using the fact thalJ? is real[5] it follows thatZ, is real. From theorem 3 and the fact that the
transform of an odd signal is odd[7] we conclude that the vector
(U? + r21) Zof
i} = j)
is odd. Rewriting[(3.]1) and (3.2) results in
(3.4) Ef = (-U—inIf

~

(35) Ellf = (ﬁ— ZT’]I)f

(31) Ellf —

(32) Ellf —

(3.3) f=
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In order to show thak,,f = E,.f, it remains to be shown thaff = —Uf. Transforming the
conjugate vectof we obtain

(3.6) Uf(k) = Uf(—k)
using the conjugation property[7]. Further conjugating](3.6) results in
(3.7) Uf(k) = Uf(—k) = —Uf(k)

where we have used the fact tids an odd vectorg

Theorem 3.2. The subspacg/y is perpendicular to the subspadé

Proof. Let a = (U — r,I) (U? — 72I) f for somef € Cg andb = (U + rI) (U% — r31) g for
someg € Cg then taking the inner product we get

(3.8) ab) = S @)+ S a @+ 1) EE ),
k=0 k=0

wherea (2k) = (U? — ryU? — r3U + ryr3I) f (2k) . Now

(3.9) U (2k) = Fy(2k) + Fy (2k)

(3.10) U2f (2k) = §Nf (2k) — ng (Zk + g)

(3.11) USt (2k) = ;NFO (2k) + %ONF1 (2k)

where we have made use of the duality property and the facf tisatven which also implies
thatF, andF; defined in[(1.4) and (1]5) are even. Usipg|3[9),(B8.10) pnd](3.11) the components
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a (2k) simplifies to

(3.12) a(2k) =N {alFo (2K) + a2 Fy (2k) + asry f (2k) +aur f (2/€ + g)} .

Similarly it can be shown that

3.13)  b(2k) =N [alGO (2k) + Gy (2k) —asrig (2k) — agrig (Qk; + %) ,

whereG,+ G, denotes the transform gf o, = —7+ﬁ g = %ﬁ a3 = %ﬁ anda, = ;.
Hence the first summation ip (3.8) becomes

(3.14)
81 81 J1
> a(2k)b(2k) = [al > Fy(2k) Gy (2k) —ajr; Z f(2k) g (2k)
k=0 k=0
B N_q N_g —_—
2 2 - G IAY 2.2 < N N
(3.15) N |aj Fy (2k) Gy (2k) —agry f (2k + 5) g (Qk + 5)] +
| k=0 k=0
S ¥ B
2 R lGIAY 2
(3.16) N -041042 % Fy (2k) Gy (2k) —asayr? % f(2k)g (2k+ 5 > +
S o N -
, _
(3.17) N _Ozlag ; Fy (2k) Gy (2k) —asayr? kz:% f (% + 5 > g(2k)_ +
N1 1
(318) 0610637’1 [Z f Qk Go 2]€ Z Fo Qk :|
k=0
S ¥y -
(319) 7’1N2 10y Z (2]4? + ) Go (2]€) —Qg03 F (2]{?) (2k’) +
i k= k=0 ]
[ 5 F-1 — |
(3.20) rN? |agas Y f (2k) Gy (2k) —onou Y Fy(2k) g (2k:+ g) +
i k=0 k=0 ]
F-1 —
(3.21) a0y N2 [Z f (Qk + ) Gy (2K) Fy (2 (Qk + g)
k=0

The first summation ir] (3.15) can be simplified in the following manner

-1 — —

vl
vl
—
vl

°|5

H
|z

~1
Fy (2k) Gy (2k) = WG F (25 +1) g (2p + 1)

k=0

Bl

=0

i
)
=

I
vz o
=

) e

=0

(3.22) -

o] 2

°|5
A~
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since the inner summation is zero unless: j. Changing to the dummy variablein (3.22)
we further obtain

(3.23) Fy (2k) Gy (2F) = gN F2k+1)g@k+1)
k=0 k=0
3N 3
8 2 SR
(3.24) §Nk;1f (2k+1)g(2k +1)
N 41 2 -
8 3 N N
(3.25) =N kz:; f (Qk: + 5) g (% + 5),

where [(3.2}4) is obtained frorh (3]23) by using the periodiéitef the argument of the summa-
tion [1]. Finally (3.15) reduces to

|z

—1 -
N N
2k + — 2k+— ) =
o (wrg)a(nrg)-o

since the coefficient is zero. Similarly it can be shown that (3.14), {(3.16)[and (3.17)are zero.
Consider the first summation in (3]18), it may be simplified as follows

(3.26) N? ENQS - airf}

N_q N_1N_q

3 9 2 2 A :
FER G = 3 3w f (2) 5 (7))

k=0 k=0 35=0

B
I
o

(3.27) =

vz

N N
—1 N 141

FENTER = 5 3 37 WA f (k)12

=0 k=0 35=0

o

(3.28) = 3" Fy (2k) g (2k).
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Hence|(3.1B) is identically zero. Similarly it may be shown that (3.21) is zerd. Tn|(3.19) the first
sum becomes

N 1

X NMamm_ 2 —ok(29) ( ﬁ)*
:g A Zw—2j(2k+1)f (2]{;_‘_%)@
=237 N W eI £ (95 41) g (2R)

(3.29) = Fy (2k) g (2k)

Finally (3.19) becomes

since the coefficient is zero. Similarly (3]20) may be shown to be zero. Likewise, it can be

N
shown that>" a (2k + 1) b (2k + 1) = 0 which implies that\,o L\;o. 8
k=0
It may be shown that not all subspaces are orthogonal. The relationship between the sub-
spacesV,;,p = 1,2:1 = 0,1, 2,3 is illustrated in figure 1. In fadPs from (2.1) is given by

(3.30) Py =Ej + Ei2 + Ey + Eg
and
(331) I- PE = E11 + E13 + E21 + E23

4. SIMPSON DISCRETE FRACTIONAL FOURIER TRANSFORM

Using the projection operators bf a fractional transform is defined as follows:

2 3

(4.1) U =) > roeloE,,

p=1 [=0
wherea € R. With the definition|[(4.]1) the following properties are satisfied:
(a) The fractional transform of an even signal is even.
(b) The fractional transform of an odd signal is odd.
(c) Time reversalJ*f(—k) is the fractional transform of the reversed signal
f(_j)7]20717 aN_]-
(d) Additive:U°U”? = U**#. From this we obtain the inverse fractional transfotm® by
setting? = —a in conjunction with [(4.1L).
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5. CONCLUSION

We have investigated the constituent matriceblpshown that they are real and determined
the spatial orientation of their respective ranges. These projectors have been used to define a
Simpson Discrete Fractional Fourier Transform.
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