


Paper's Title:
Some Convergence Results for JungckAm Iterative Process In Hyperbolic Spaces
Author(s):
Akindele Adebayo Mebawondu and Oluwatosin Temitope Mewomo
School of Mathematics, Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email:
216028272@stu.ukzn.ac.za,
mewomoo@ukzn.ac.za
Abstract:
In this paper, we introduce a new three steps iterative process called JungckAM iterative process and show that the proposed iterative process can be used to approximate fixed points of Jungckcontractive type mappings and JungckSuzuki type mappings. In addition, we establish some strong and Δconvergence results for the approximation of fixed points of JungckSuzuki type mappings in the frame work of uniformly convex hyperbolic space. Furthermore, we show that the newly proposed iterative process has a better rate of convergence compare to the JungckNoor, JungckSP, JungckCR and some existing iterative processes in the literature. Finally, stability, data dependency results for JungckAM iterative process is established and we present an analytical proof and numerical examples to validate our claim.
Paper's Title:
MSplit Equality for Monotone Inclusion Problem and Fixed Point Problem in Real Banach Spaces
Author(s):
^{1,2}Christian Chibueze Okeke, ^{3}Abdumalik Usman Bello, ^{1}Chinedu Izuchukwu, and ^{1}Oluwatosin Temitope Mewomo
^{1}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: okekec@ukzn.ac.za
Email: izuchukwuc@ukzn.ac.za
Email: mewomoo@ukzn.ac.za
^{2}DSTNRF
Center of Excellence in Mathematical and Statistical Sciences (CoEMass)
Johannesburg,
South Africa.
^{3}Federal
University,
DutsinMa, Katsina State,
Nigeria.
Email:
uabdulmalik@fudutsinma.edu.ng
Abstract:
In this paper a new iterative algorithm for approximating a common solution of split equality monotone inclusion problem and split equality fixed point problem is introduced. Using our algorithm, we state and prove a strong convergence theorem for approximating an element in the intersection of the set of solutions of a split equality monotone inclusion problem and the set of solutions of a split equality fixed point problem for right Bregman strongly nonexpansive mappings in the setting of puniformly convex Banach spaces which are also uniformly smooth. We also give some applications.
Paper's Title:
A Self Adaptive Method for Solving Split Bilevel Variational Inequalities Problem in Hilbert Spaces
Author(s):
Francis Akutsah^{1}, Ojen Kumar Narain^{2}, Funmilayo Abibat Kasali^{3} Olawale Kazeem Oyewole^{4} and Akindele Adebayo Mebawondu^{5}
^{1}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: 216040405@stu.ukzn.ac.za,
akutsah@gmail.com
^{2}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: naraino@ukzn.ac.za
^{3}Mountain Top University,
Prayer City, Ogun State,
Nigeria.
Email: fkasali@mtu.edu.ng
^{4}TechnionIsrael
Institute of Technology.
Email: 217079141@stu.ukzn.ac.za,
oyewoleolawalekazeem@gmail.co
^{5}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
DSTNRF Centre of Excellence in Mathematical and Statistical Sciences (CoEMaSS),
Johannesburg,
South Africa.
Mountain Top University,
Prayer City, Ogun State,
Nigeria.
Email: dele@aims.ac.za
Abstract:
In this work, we study the split bilevel variational inequality problem in two real Hilbert spaces. We propose a new modified inertial projection and contraction method for solving the aforementioned problem when one of the operators is pseudomonotone and Lipschitz continuous while the other operator is αstrongly monotone. The use of the weakly sequential continuity condition on the Pseudomonotone operator is removed in this work. A Strong convergence theorem of the proposed method is proved under some mild conditions. In addition, some numerical experiments are presented to show the efficiency and implementation of our method in comparison with other methods in the literature in the framework of infinite dimensional Hilbert spaces. The results obtained in this paper extend, generalize and improve several.
Paper's Title:
Iterative Algorithm for Split Generalized Mixed Equilibrium Problem Involving Relaxed Monotone Mappings in Real Hilbert Spaces
Author(s):
^{1}U.A. Osisiogu, F.L. Adum, and ^{2}C. Izuchukwu
^{1}Department of Mathematics and
Computer Science,
Ebonyi State University, Abakaliki,
Nigeria.
Email: uosisiogu@gmail.com,
adumson2@yahoo.com
^{2}School of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: izuchukwuc@ukzn.ac.za,
izuchukwu_c@yahoo.com
Abstract:
The main purpose of this paper is to introduce a certain class of split generalized mixed equilibrium problem involving relaxed monotone mappings. To solve our proposed problem, we introduce an iterative algorithm and obtain its strong convergence to a solution of the split generalized mixed equilibrium problems in Hilbert spaces. As special cases of the proposed problem, we studied the proximal split feasibility problem and variational inclusion problem.
Paper's Title:
DIterative Method for Solving a Delay Differential Equation and a TwoPoint SecondOrder Boundary Value Problems in Banach Spaces
Author(s):
Francis Akutsah^{1}, Akindele Adebayo Mebawondu^{2}, Oluwatosin Babasola^{3}, Paranjothi Pillay^{4} and Ojen Kumar Narain^{5}
^{1}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: 216040405@stu.ukzn.ac.za,
akutsah@gmail.com
^{2}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
DSTNRF Centre of Excellence in Mathematical and Statistical Sciences (CoEMaSS),
Johannesburg,
South Africa.
Mountain Top University,
Prayer City, Ogun State,
Nigeria.
Email: dele@aims.ac.za
^{3}Department
of Mathematical Sciences,
University of Bath,
Claverton Down,
Bath, BA2 7AY
UK.
Email: ob377@bath.ac.uk
^{4}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: pillaypi@ukzn.ac.za
^{5}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: naraino@ukzn.ac.za
Abstract:
The purpose of this paper is to reestablish the convergence, stability and data dependence results established by [2] and [3] by removing the strong assumptions imposed on the sequences which were used to obtain their results. In addition, we introduced a modified approach using the Diterative method to solve a twopoint secondorder boundary value problem, and also obtain the solution of a delay differential equations using the obtained results in this paper. The results presented in this paper do not only extend and improve the results obtained in [2, 3], it further extends and improve some existing results in the literature.
Paper's Title:
Existence of Solution of Differential and RiemannLiouville Equation Via Fixed Point Approach in Complex Valued bMetric Spaces
Author(s):
K. Afassinou, A. A. Mebawondu, H. A. Abass and O. K. Narain
Department of Science Access,
University of Zululand, KwaDlangezwa,
South Africa.
Email: komia@aims.ac.za
DSTNRF Centre of Excellence in
Mathematical and Statistical Sciences (CoEMaSS),
Johannesburg,
South Africa.
Email: dele@aims.ac.za
DSTNRF Centre of Excellence in
Mathematical and Statistical Sciences (CoEMaSS),
Johannesburg,
South Africa.
Email: hammedabass548@gmail.com
School of Mathematics, Statistics and
Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: naraino@ukzn.ac.za
Abstract:
In this paper, we establish some fixed point and common fixed point results for a new type of generalized contractive mapping using the notion of Cclass function in the framework of complex valued bmetric spaces. As an application, we establish the existence and uniqueness of a solution for RiemannLiouville integral and ordinary differential equation in the framework of a complete complex valued bmetric spaces. The obtained results generalize and improve some fixed point results in the literature.
Search and serve lasted 0 second(s).