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sequences which were used to obtain their results. In addition, we introduced a modified ap-
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[2, 3], it further extends and improve some existing results in the literature.
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1. I NTRODUCTION AND PRELIMINARIES

Let X be any arbitrary space, a pointx ∈ X is called a fixed point of a mappingT : X → X
if

Tx = x,(1.1)

that is, a pointx ∈ X which remains invariant under the action of the mappingT. Let C be a
nonempty, closed and convex subset of a Banach spaceX andT a self map on C. We denote by
F (T ) = {x : x = Tx} the fixed points ofT. We recall that a mappingT : C → C is said to be
a contraction if for allx, y ∈ C there existsk ∈ [0, 1) such that

‖Tx− Ty‖ ≤ k‖x− y‖.(1.2)

For the past 70 years, researchers have paid a very good attention to finding an analytical solu-
tion to problem (1.1), but this have been almost practically impossible. In view of this, iterative
method has been adopted in finding an approximate solution to (1.1). A good number of itera-
tive processes (explicit, implicit, Jungck-type and so on) have been introduced and studied by
many authors, ( see [4, 5, 6, 7,?, 8, 9, 10] and the reference there in). Iterative methods can
produce numerical solutions to certain classes of problems of nonlinear analysis, that can be
thought in terms of fixed point theory, where analytical methods may fail. Developing a faster
and more effective iterative techniques for approximating fixed points of nonlinear mappings is
still an open problem in this area of research. In the light of this, Hussain et al. [2] introduced a
new iterative method called the D-iteration. The D-iterative method is defined as follows

x0 ∈ C,

yn = T ((1− αn)xn + αnTxn),

vn = T ((1− βn)Txn + βnTyn),

xn+1 = Tvn, n ≥ 1,

(1.3)

where{αn} and{βn} are sequences in[0, 1] for all n ∈ N. They established that the D-iterative
process is faster than M-iterative process in [11], M* iterative process in [12] and some other
existing iterative process in the literature. Furthermore, Hussain et al. [3] presented the stability,
data dependency and errors estimation results for D-iteration method. More so, they establish
that the error in D-iterative process is controllable. However, the convergence, stability, and data
dependence results were obtained under some strong assumptions imposed on the sequences
{αn} and{βn}. For example, they established the following results.

Theorem 1.1( [2, 3]). Let C be a nonempty closed convex subset of a Banach space space
X. and T : C → C be a contraction mapping. Assume{xn} to be an iterative sequence
generated by(1.3), where{αn}, and{βn} are sequences in[0, 1] are real sequences satisfying∑∞

n=1 αn = ∞ =
∑∞

n=1 βn. Then the sequence{xn} converges strongly to a unique fixed point
of T.

Remark 1.1. We claim that the assumption
∑∞

n=1 αn = ∞ =
∑∞

n=1 βn is not relevant in
achieving the above result. We shall establish our claim in the next section.

Theorem 1.2([3]). LetC be a nonempty closed convex subset of a Banach space spaceX. and
T : C → C be a contraction mapping. Let{xn} be an iterative sequence generated by(1.3)
with sequences{αn} and{βn} in [0, 1] satisfying

∑m
n=0[βn +kαnβn] = ∞ for all n ∈ N. Then

the iterative process(2.9) is T -stable.

Remark 1.2. We claim that the assumption
∑m

n=0[βn+kαnβn] = ∞ is not relevant in achieving
the above result. We shall establish our claim in the next section.
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Question: It is natural to ask if the D-iterative method (1.3) can be used to approximate the
solution of a Two Point Second Order- Boundary Value Problem (TPSO-BVP)?

We recall the following results that will be relevant in the course of this study.

Definition 1.1. Let T : C → C be a mapping. Define an iterative method by

xn+1 = f(T, un)(1.4)

such that{xn} converges to a fixed pointx∗ of T. Suppose that{un} is an arbitrary sequence in
C and set

εn = ‖un+1 − f(T, un)‖
for all n ∈ N. The iterative process (1.4) is said to beT stable or stable with respect toT if

lim
n→∞

εn = 0

if and only if
lim

n→∞
un = x∗.

Definition 1.2. Let T, T : C → C be two mappings. ThenT is said to be an approximate
operation ofT if there existsε > 0 such that‖Tx− Tx‖ ≤ ε for all x ∈ C.

Lemma 1.3. [13] Let {αn} and {βn} be nonnegative real sequence satisfying the following
inequalities

αn+1 ≤ (1− γn)αn + βn

whereγn ∈ (0, 1) for all n ∈ N,
∑∞

n=0 γn = ∞ andlimn→∞
βn

γn
= 0, thenlimn→∞ αn = 0.

The purpose of this paper is to provide an affirmative answer to the above question and
to re-establish the results obtained in the above-mentioned works of (Hussain et al., [2] and
Hussain et al., [3]) on convergence, stability and data dependence results by removing the strong
assumptions used to obtain their results. Our approach modifies the existing results as well as
improves and extends the results obtained in [2, 3] and in other literature.

2. M AIN RESULTS

In this section, we establish that the convergence, stability and data dependence results of the
D-iterative method (1.3) for the contraction mappings are independent of the choice of the real
sequences{αn} and{βn}. It is easy to see that the D-iteration can be re-written in the form

x0 ∈ C,

zn = (1− αn)xn + αnTxn,

yn = Tzn,

wn = (1− βn)Txn + βnTyn,

vn = Twn,

xn+1 = Tvn, n ≥ 1,

(2.1)

Theorem 2.1. Let C be a nonempty closed convex subset of a Banach space spaceX. and
T : C → C be a contraction mapping. Assume{xn} to be an iterative sequence generated by
(2.1), where{αn}, and{βn} are sequences in[0, 1]. Then the sequence{xn} converges strongly
to a unique fixed point ofT.
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Proof. In the proof of the above result, the authors in [2, 3] arrived at the following inequality

‖xn+1 − p‖ ≤ k3(n+1)‖x0 − p‖
m∏

n=0

[1− (βn + kαnβn)(1− k)].(2.2)

It is easy to see that1 − (βn + kαnβn)(1 − k) < 1, sincek ∈ [0, 1), {αn} andβn ∈ [0, 1] for
all n ∈ N. Thus, we have

m∏
n=0

[1− (βn + kαnβn)(1− k)] < 1,

as such we have (2.2) becomes

‖xn+1 − p‖ ≤ k3(n+1)‖x0 − p‖.(2.3)

Taking the limit asn →∞ in (2.3), we have

lim
n→∞

‖xn+1 − p‖ = 0.

Sincek ∈ (0, 1) and we know thatlim
n→∞

k3(n+1) = 0.

Remark 2.1. In the light of this development, we have provided an affirmative answer to Re-
mark 1.1 that the condition

∑∞
n=1 αn = ∞ =

∑∞
n=1 βn is not relevant in achieving the above

result.

Theorem 2.2. Let C be a nonempty closed convex subset of a Banach space spaceX. and
T : C → C be a contraction mapping. Let{xn} be an iterative sequence generated by(2.1)
with sequences{αn} and {βn} in [0, 1] for all n ∈ N. Then the iterative process(2.1) is T -
stable.

Proof. Let {un} be an arbitrary sequence inC and suppose that the sequence{εn} is defined as

εn = ‖un+1 − Tqn‖,(2.4)

whereqn = Tmn, mn = (1− βn)Tun + βnT ln, ln = Tkn andkn = (1− βn)un + βnTun for
all n ∈ N. Suppose thatlim

n→∞
εn = 0. We need to show thatlimn→∞ un = p. Using (2.4), (2.1)
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and (1.2), we obtain

‖un+1 − p‖
= ‖un+1 − xn+1 + xn+1 − p‖
≤ ‖un+1 − xn+1‖+ ‖xn+1 − p‖
≤ ‖un+1 − Tqn‖+ ‖Tqn − xn+1‖+ ‖xn+1 − p‖
≤ εn + ‖Tqn − Tvn‖+ ‖xn+1 − p‖
≤ εn + k‖qn − vn‖+ ‖xn+1 − p‖
≤ εn + k2‖mn − wn‖+ ‖xn+1 − p‖
≤ εn + k2(1− βn)‖Tun − Txn‖+ k3βn‖yn − ln‖+ ‖xn+1 − p‖
≤ εn + k3(1− βn)‖un − xn‖+ k4βn‖kn − zn‖+ ‖xn+1 − p‖
≤ εn + k3(1− βn)‖un − xn‖+ k4βn[(1− αn)‖un − xn‖+ αnk‖un − xn‖] + ‖xn+1 − p‖
≤ εn + k3(1− βn)‖un − xn‖+ k4βn(1− αn(1− k))‖un − xn‖+ ‖xn+1 − p‖
≤ εn + k3[1− βn(1− k(1− αn(1− k)))]‖un − xn‖+ ‖xn+1 − p‖
≤ εn + ‖un − xn‖+ ‖xn+1 − p‖

≤ εn + ‖un − p‖+ ‖xn − p‖+ ‖xn+1 − p‖.
(2.5)

It is easy to see thatk3[1 − βn(1 − k(1 − αn(1 − k)))] < 1, sincek ∈ [0, 1), {αn}, {βn}
are in [0, 1], we getk2(1 − αn(1 − k)) < 1 and1 − βn(1 − k(1 − αn(1 − k))) < 1, thus,
k3[1− βn(1− k(1− αn(1− k)))] < 1. Then, we have

‖un+1 − p‖ − ‖un − p‖ ≤ εn + ‖xn − p‖+ ‖xn+1 − p‖,(2.6)

using Theorem 2.1, we have thatlimn→∞ ‖xn+1−p‖ = 0 = limn→∞ ‖xn−p‖ and our assump-
tion thatlimn→∞ εn = 0, we have

lim
n→∞

[‖un+1 − p‖ − ‖un − p‖] = 0,(2.7)

as such, we have
lim

n→∞
un = p.

Conversely, using the fact thatlimn→∞ un = p and (2.1), we have

εn = ‖un+1 − Tqn‖
≤ ‖un+1 − xn+1‖+ ‖xn+1 − Tqn‖
= ‖un+1 − xn+1‖+ ‖Tvn − Tqn‖
≤ ‖un+1 − xn+1‖+ k3[1− βn(1− k(1− αn(1− k)))]‖un − xn‖
≤ ‖un+1 − p‖+ ‖xn+1 − p‖+ k3[1− βn(1− k(1− αn(1− k)))]‖un − p‖
+ k3[1− βn(1− k(1− αn(1− k)))]‖xn − p‖.(2.8)

Using our assumptionlimn→∞ ‖un − p‖ = 0 = limn→∞ ‖un+1 − p‖ and Theorem 2.1
(limn→∞ ‖xn+1 − p‖ = 0 limn→∞ ‖xn − p‖). We havelimn→∞ εn = 0. Hence, the sequence
{xn} is T -Stable.

Remark 2.2. In the light of this development, we have provided an affirmative answer to Re-
mark 1.2 that the condition

∑m
n=0[βn + kαnβn] = ∞ is not relevant in achieving the above

result.
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Theorem 2.3.LetC be a nonempty closed convex subset of a Banach spaceX. andT, : C → C
be a contraction mapping andT be an approximate mapping ofT with maximum admissible
error ε. Let {xn} be an iterative sequence generated by(2.1) and define an iterative sequence
{x} as follows



zn = (1− αn)xn + αnTxn,

yn = Tzn,

wn = (1− βn)Txn + βnTyn,

vn = Twn,

xn+1 = Tvn, n ≥ 1,

(2.9)

with real sequences{αn} and{βn} are sequences in[0, 1] for all n ∈ N. If Tp = p andTp = p

such thatlimn→∞ x = p then‖p− p‖ ≤
(

3+2k
1−k

)
ε.

Proof. Using (2.1), (2.9) and (1.2), we have

‖xn+1 − xn+1‖
= ‖Tvn − Tvn‖
≤ ‖Tvn − Tv‖+ ‖Tv − Tvn‖
≤ k‖vn − v‖+ ε

= k‖Twn − Twn‖+ ε

≤ k‖Twn − Twn‖+ k‖Twn − Twn‖+ ε

≤ k2‖wn − wn‖+ kε + ε

= k2‖(1− βn)Txn + βnTyn − (1− βn)Txn − βnTyn‖+ (k + 1)ε

≤ k2(1− βn)‖Txn − Tx‖+ k2(1− βn)‖Tx− Txn‖+ βnk
2‖Tyn − Ty‖

+ βnk
2‖Tx− Tyn‖+ (k + 1)ε

≤ k3(1− βn)‖xn − x‖+ βnk
3‖yn − y‖+ (k2(1− βn) + βnk

2 + k + 1)ε

= k3(1− βn)‖xn − xn‖+ βnk
3‖Tzn − Tzn‖+ (k2(1− βn) + βnk

2 + k + 1)ε

= k3(1− βn)‖xn − xn‖+ βnk
3‖Tzn − Tz‖+ βnk

3‖Tz − Tzn‖+ (k2(1− βn)

+ βnk
2 + k + 1)ε

= k3(1− βn)‖xn − xn‖+ βnk
4‖zn − z‖+ (βnk

3 + k2(1− βn) + βnk
2 + k + 1)ε

= k3(1− βn)‖xn − xn‖+ βnk
4[‖(1− αn)xn + αnTxn − (1− αn)xn − αnTxn‖]

+ (βnk
3 + k2(1− βn) + βnk

2 + k + 1)ε

= k3(1− βn)‖xn − xn‖+ βnk
4(1− αn)‖xn − x‖+ βnk

4αn‖Txn − Txn‖‖
+ (βnk

3 + k2(1− βn) + βnk
2 + k + 1)ε

(2.10)
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≤ k3[1− βn(1− k(1− αn))]‖xn − x‖+ βnk
4αn‖Txn − Tx‖+ βnk

4αn‖Tx− Txn‖‖
+ (βnk

3 + k2(1− βn) + βnk
2 + k + 1)ε

≤ k3[1− βn(1− k(1− αn))]‖xn − x‖+ βnk
5αn‖xn − x‖

+ (βnk
4αn + βnk

3 + k2(1− βn) + βnk
2 + k + 1)ε

= k3[1− βn[1− k(1− αn(1− k))]]‖xn − x‖+ [1 + k(1 + βnk(1 + k(1 + kαn)))]ε.

(2.11)

Since{αn}, {βn} are in[0, 1] andk ∈ [0, 1), we have the following estimate

1− βn[1− k(1− αn(1− k))] ≤ 1 ⇒ k3[1− βn[1− k(1− αn(1− k))]] ≤ k3 < k,(2.12)

1 + kαn ≤ 2

k(1 + kαn) ≤ 2k < 2

1 + k(1 + kαn) ≤ 1 + 2k

βnk(1 + k(1 + kαn)) ≤ (1 + 2k)βnk < (1 + 2k)

1 + βnk(1 + k(1 + kαn)) ≤ 1 + (1 + 2k)βnk < (2 + 2k) = 2(1 + k)

k(1 + βnk(1 + k(1 + kαn))) ≤ k(1 + (1 + 2k)βnk) < 2k(1 + k) < 2(1 + k)

[1 + k(1 + βnk(1 + k(1 + kαn)))] ≤ (1 + k(1 + (1 + 2k)βnk)) < 3 + 2k.
(2.13)

Thus, using (2.12), (2.10), becomes

‖xn+1 − xn+1‖ ≤ k‖xn − x‖+ (3 + 2k)ε.(2.14)

Now, by Theorem 2.1, we obtainlimn→∞ xn+1 = limn→∞ xn = p and by our assumption that
limn→∞ xn+1 = limn→∞ xn = p. Taking the limit asn →∞ of (2.14), we have

‖p− p‖ ≤
(

3 + 2k

1− k

)
ε.(2.15)

Remark 2.3. Our proof technique does not require the following assumption used in [3]. That
is

(1) 1
2
≤ αn + kβnαn.

(2)
∑∞

n=0(αn + kβnαn) = ∞.

In addition, our estimate

(
3+2k
1−k

)
ε is better than the estimate

(
7ε

1−k

)
ε.

3. APPLICATION

3.1. Application to a Two Point Second Order- Boundary Value Problem (TPSO-BVP).
We draw our inspiration from the work of Bello et al. [1]. The authors considered the following
Two Point Second Order- Boundary Value Problem (TPSO-BVP).

x” = f(t, x, x
′
), 0 ≤ t ≤ 1(3.1) {

α0x(0) + β0x
′
(0) = γ0,

α1x(1) + β1x
′
(1) = γ1,

(3.2)

AJMAA, Vol. 19 (2022), No. 2, Art. 6, 14 pp. AJMAA
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whereαj, βj andγj for j = 0, 1 andα2
j +β2

j > 0. It was established in [1] thatx(t) is a solution
of (3.1)-(3.2) if and only ifx(t) is a solution of the equivalent integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s), x
′
(s))ds + y(t)(3.3)

on [a, b] where

G(t, s) =

{
(t)(s− 1), 0 ≤ t ≤ s

(t− 1)(s), s ≤ t ≤ 1,
(3.4)

is the Green function associated to the TPSO-BVP (3.1)-(3.2),

x” = 0, 0 ≤ t ≤ 1(3.5) {
α0x(0) + β0x

′
(0) = γ0,

α1x(1) + β1x
′
(1) = γ1,

(3.6)

andy(t) is the solution (3.5)-(3.13).
In what follows, we introduce a new approach related to the iterative method (2.1) to solve

TPSOâ̆AŞBVP (3.1)-(3.2). In the light of (3.2), we modified iterative process (2.1) as follows:

z
′′
n = (1− αn)x

′′
n + αnf(t, xn, x

′
n),

α0zn(0) + β0z
′
n(0) = γ0, α1zn(1) + β1z

′
n(1) = γ1

y
′′
n = f(t, zn, z

′
n),

α0yn(0) + β0y
′
n(0) = γ0, α1yn(1) + β1y

′
n(1) = γ1

w
′′
n = (1− αn)f(t, xn, x

′
n) + αnf(t, yn, y

′
n),

α0wn(0) + β0w
′
n(0) = γ0, α1wn(1) + β1w

′
n(1) = γ1

v
′′
n = f(t, wn, w

′
n),

α0vn(0) + β0v
′
n(0) = γ0, α1vn(1) + β1v

′
n(1) = γ1

x
′′
n+1 = f(t, vn, v

′
n),

α0xn+1(0) + β0x
′
n+1(0) = γ0, α1xn+1(1) + β1x

′
n+1(1) = γ1,

(3.7)

where{α} and{βn} are sequences in[0, 1] andαj, βj, γj are sequences inR with α2
j + β2

j > 0
for j = 0, 1 andx0(t) is an initial function satisfying the boundary conditions in (3.2).

Theorem 3.1.Supposef(t, x(t), x
′
(t)) be a function whose derivative is bounded with respect

to x and that{xn} is an iterative sequence inC1[0, 1] generated by(2.1) with the sequences
αn, βn in [0, 1]. Let x0(t) be an arbitrary function inC1[0, 1] that satisfiesx

′′
= 0, as well as

the boundary condition(3.2)and

Γ = max
[0,1]×R2

|∂f

∂x
|,

whereη = 3
8
Γ < 1. Then,(3.1)-(3.2)has a unique solution inC1[a, b] and the iterative sequence

{xn} converges uniquely tox∗(t).
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Proof. To establish that (3.1)-(3.2) has a unique solution inC1[0, 1] and that the iterative se-
quence{xn} converges uniquely tox∗(t). It suffices to establish that

T (x(t)) =

∫ 1

0

G(t, s)f(s, x(s), x
′
(s))ds + g(t)

is a contraction and then, apply the Banach principle. It is well-known that the absolute
maximum value of the function

∫ 1

0
G(t, s)ds = 3

8
. Now, let x(t), y(t) ∈ C1[0, 1] such that

x(t) 6= y(t), we have

|Tx(t)− Ty(t)| =
∣∣∣∣ ∫ 1

0

G(t, s)f(s, x(s), x
′
(s))ds + g(t)−

[ ∫ 1

0

G(t, s)f(s, y(s), y
′
(s))ds + g(t)

]∣∣∣∣
≤

∫ 1

0

|G(t, s)||f(s, x(s), x
′
(s))− f(s, y(s), y

′
(s))|ds

≤ 3

8

∫ 1

0

|f(s, x(s), x
′
(s))− f(s, y(s), y

′
(s))|

≤ 3

8
max
s∈[0,1]

|f(s, x(s), x
′
(s))− f(s, y(s), y

′
(s))|

≤ η|x(t)− y(t)|.

It is clear thatTx(t) is a contraction mapping and hence by the Banach contraction mapping
principle, it has a unique fixed pointx∗(t). In addition, using Theorem 2.1, the iterative sequence
{xn} converges uniformly tox∗(t).

Example 3.1.We consider the following two point second order boundary value problem


x

′′
= t3 − tx(t) + 1

x′(0) = x(0)

x′(1) + x(1) = 3.

(3.8)

Clearlyx
′′

= f(t, x, x′) = t3 − tx(t) + 1, we have∂f
∂x

= −t. Thus, we have

Γ = max
[0,1]×R2

∣∣∣∣∂f

∂x

∣∣∣∣ = 1,

it follows that the derivate ofx
′′

= f(t, x, x′) with respect tox is bounded andη = 3
8

< 1. It
is easy to see that the initial conditions are satisfied if we takex0 = t + 1. Clearly, we have
x′(0) = x(0), andx′(0) + x(1) = 3. It is easy to see that all the conditions in Theorem 3.1 are
satisfied. Hence, the problem(3.8)has a unique solutionx∗(t) = t2 ∈ C1[0, 1].

In what follow, we compare the exact solution with the approximate solution using the itera-
tive sequence(3.7)with αn = 1

n+2
andβn = 2n

5n2+70
.
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t x∗(t) {xn} (Algorithm(3.7))
0 0 0.00000006

0 .1 0.01 0.01000007
0.2 0.04 0.04000008
0.3 0.09 0.09000010
0.4 0.16 0.16000010
0.5 0.25 0.25000010
0.6 0.36 0.36000010
0.7 0.49 0.49000010
0.8 0.64 0.64000010
0.9 0.81 0.81000011
1 1 1.00000010

Clearly, the approximate solution is equivalent to the exact solution.

3.2. Application to a Delay Differential Equation. Let C(a, b) denote the space of all con-
tinuous real valued functions of a closed interval[a, b] with the norm

‖x− y‖∞ = max
t∈[a,b]

|x(t)− y(t)|.

It is well-known that(C[a, b], ‖ · ‖∞) is a Banach space. In what follows, we apply our result to
the following delay differential equation

x′(t) = f(t, x(t), x(t− δ)), t ∈ [t0, t1],(3.9)

with initial condition

x(t) = φ(t) t ∈ [t0 − δ, t0].(3.10)

We suppose that the following conditions hold:

(1) t0, t1 ∈ R andδ > 0;
(2) f ∈ C([t0, t1]× R2, R) such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ γ(|x1 − y1|+ |x2 − y2|),(3.11)

for all x1, x2, y1, y2 ∈ R andt ∈ [t0, t1] and2γ(t1 − t0) < 1;
(3) φ ∈ C([t0 − δ, t1], R).

It is well-known that problems (3.9) and (3.10) can be formulated as follows;

x(t) =

{
φ(t), t ∈ [t0 − δ, t0]

φ(t0) +
∫ t

t0
f(s, x(s), x(s− δ))ds, t ∈ [t0, t1].

(3.12)

Theorem 3.2. Suppose that the assumptions(1) − (3) holds. Then the iterative process(2.1)
converges strongly to the solution of problem(3.9)-(3.10)if

∑∞
n=1(αn + βn) = ∞.

Proof. Let {xn} be an iterative sequence (2.1) for an operatorT defined by

Tx(t) =

{
φ(t), t ∈ [t0 − δ, t0]

φ(t0) +
∫ t

t0
f(s, x(s), x(s− δ))ds, t ∈ [t0, t1].

(3.13)
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Let x∗ be the fixed point ofT. We need to show thatxn → x∗ asn → ∞. To see this, observe
that

‖zn − x∗‖∞
= ‖(1− αn)xn + αnTxn − x∗‖∞
≤ (1− αn)‖xn − x∗‖∞ + αn‖Txn − Tx∗‖∞
= (1− αn)‖xn − x∗‖∞ + αn max

t∈[t0−δ,t1]
|Txn(t)− Tx∗(t)|

= (1− αn)‖xn − x∗‖∞

+ αn max
t∈[t0−δ,t1]

∣∣∣∣φ(t0) +

∫ t

t0

f(s, xn(s), xn(s− δ))ds− (φ(t0) +

∫ t

t0

f(s, x∗(s), x∗(s− δ))ds)

∣∣∣∣
≤ (1− αn)‖xn − x∗‖∞ + αn max

t∈[t0−δ,t1]

∫ t

t0

|f(s, xn(s), xn(s− δ))ds− f(s, x∗(s), x∗(s− δ))|ds

≤ (1− αn)‖xn − x∗‖∞

+ αnγ

∫ t

t0

( max
t∈[t0−δ,t1]

|xn(s)− x∗(s)|+ max
t∈[t0−δ,t1]

|xn(s− δ)− x∗(s− δ))|)ds

≤ (1− αn)‖xn − x∗‖∞ + αnγ

∫ t

t0

(‖xn − x∗‖∞ + ‖xn − x∗‖∞)ds

= (1− αn)‖xn − x∗‖∞ + 2αnγ‖xn − x∗‖∞
∫ t

t0

ds

= (1− αn)‖xn − x∗‖∞ + 2αnγ‖xn − x∗‖∞(t− t0)ds

≤ (1− αn(1− 2γ(t− t0)))‖xn − x∗‖∞.

Also,

‖yn − x∗‖∞ = ‖Tzn − Tx∗‖∞

= max
t∈[t0−δ,t1]

∣∣∣∣φ(t0) +

∫ t

t0

f(s, zn(s), zn(s− δ))ds− (φ(t0) +

∫ t

t0

f(s, x∗(s), x∗(s− δ))ds)

∣∣∣∣
≤ max

t∈[t0−δ,t1]

∫ t

t0

|f(s, zn(s), zn(s− δ))ds− f(s, x∗(s), x∗(s− δ))|ds

≤ γ

∫ t

t0

( max
t∈[t0−δ,t1]

|zn(s)− x∗(s)|+ max
t∈[t0−δ,t1]

|zn(s− δ)− x∗(s− δ))|)ds

≤ γ

∫ t

t0

(‖zn − x∗‖∞ + ‖zn − x∗‖∞)ds

= 2γ‖zn − x∗‖∞
∫ t

t0

ds

= 2γ‖zn − x∗‖∞(t− t0)ds

≤ ‖zn − x∗‖∞
≤ (1− αn(1− 2γ(t− t0)))‖xn − x∗‖∞.
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In addition, we have

‖wn − x∗‖∞ = ‖(1− βn)Txn + βnTyn − x∗‖∞
≤ (1− βn)‖Txn − Tx∗‖∞ + αn‖Tyn − Tx∗‖∞

= (1− βn) max
t∈[t0−δ,t1]

∣∣∣∣φ(t0) +

∫ t

t0

f(s, xn(s), xn(s− δ))ds− (φ(t0)

+

∫ t

t0

f(s, x∗(s), x∗(s− δ))ds)

∣∣∣∣
+ βn max

t∈[t0−δ,t1]

∣∣∣∣φ(t0) +

∫ t

t0

f(s, yn(s), yn(s− δ))ds− (φ(t0)

+

∫ t

t0

f(s, x∗(s), x∗(s− δ))ds)

∣∣∣∣
≤ (1− βn)γ

∫ t

t0

( max
t∈[t0−δ,t1]

|xn(s)− x∗(s)|+ max
t∈[t0−δ,t1]

|xn(s− δ)− x∗(s− δ))|)ds

+ βnγ

∫ t

t0

( max
t∈[t0−δ,t1]

|yn(s)− x∗(s)|+ max
t∈[t0−δ,t1]

|yn(s− δ)− x∗(s− δ))|)ds

≤ (1− βn)γ

∫ t

t0

(‖xn − x∗‖∞ + ‖xn − x∗‖∞)ds + βnγ

∫ t

t0

(‖yn − x∗‖∞ + ‖yn − x∗‖∞)ds

= 2(1− βn)γ‖xn − x∗‖∞
∫ t

t0

ds + 2γ‖yn − x∗‖∞
∫ t

t0

ds

= 2(1− βn)γ‖xn − x∗‖∞(t− t0) + 2βnγ‖yn − x∗‖∞(t− t0)

≤ (1− βnαn(1− 2γ(t− t0)))‖xn − x∗‖∞.

Furthermore, using similar approach as the above, we obtain

‖vn − x∗‖∞ = ‖Twn − Tx∗‖∞
≤ 2γ(t− t0)‖wn − x∗‖∞
≤ ‖wn − x∗‖∞
≤ (1− βnαn(1− 2γ(t− t0)))‖xn − x∗‖∞.

Finally, using similar approach, we obtain

‖xn+1 − x∗‖∞ = ‖Tvn − Tx∗‖∞
≤ 2γ(t− t0)‖vn − x∗‖∞
≤ ‖vn − x∗‖∞
≤ (1− βnαn(1− 2γ(t− t0)))‖xn − x∗‖∞.

Having
‖xn+1 − x∗‖∞ ≤ (1− βnαn(1− 2γ(t− t0)))‖xn − x∗‖∞,

we suppose thatζn = βnαn(1− 2γ(t− t0)) < 1, thus,ζn ∈ [0, 1] such that
∑∞

n=1 αnβn = ∞
andΓn = ‖xn − x∗‖∞. Hence, we have

Γn+1 ≤ (1− ζn)Γn.

It is easy to see that the conditions in Lemma 1.3 are satisfied. Hence, applying Lemma 1.3, we
have thatlimn→∞ ‖xn − x∗‖∞ = 0.
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Example 3.2.Consider the following first order delay differential equation

x′(t) =
1

16
(x(t)− x(t− 1)) t ∈ [0, 4],(3.14)

with initial condition

x(t) = φ(t) = et t ∈ [−1− δ, 0].(3.15)

It is easy to see that the conditions(1)− (3) above are satisfied. We have

(1) t0 = 0, t1 = 4 andδ = 1;
(2) f : [0, 4]× R → R is continuous and

f(t, x(t), x(t− δ)) =
1

16
(x(t)− x(t− 1)), t ∈ [0, 4]

and for anyx1, x2, y1, y2 ∈ R, t ∈ [0, 4], we have

|f(t, x1, x2)− f(t, y1, y2)| =
1

16
[|x1 − y1|+ |x2 − y2|].

It is clear thatγ = 1
16

, thus, we have2γ(t1 − t0) = 2× 1
16
× 4 = 1

2
< 1.

The problems(3.14)and (3.15)can be reformulated as the following integral equa-
tion

x(t) =

{
et, t ∈ [t0 − δ, t0]

φ(t0) + 1
16

∫ t

t0
(x(s)− x(s− 1))ds, t ∈ [0, 4].

(3.16)

Thus, the exact solution of the problems(3.14)and (3.15)is

x(t) =

{
et, t ∈ [t0 − δ, t0]

1 + 1
16

[et − 1− et−1 + e−1], t ∈ [0, 4].
(3.17)

4. CONCLUSION

In this article, using the D-iterative method we re-establish the convergence, stability and
data dependence results obtained by the authors in [2, 3]. We use this approach to solve a two-
point second-order boundary value problem and for the solution of a delay differential equations
which was presented in our numerical examples. Our result shows our approximate solution is
equivalent to the exact solution with a fewer time step which proves that D-iterative process has
a better approximation rate than existing iteration processes.
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