


Paper's Title:
The RiemannStieltjes Integral on Time Scales
Author(s):
D. Mozyrska, E. Pawłuszewicz, D. Torres
Faculty Of Computer Science,
Białystok University Of Technology,
15351 Białystok,
Poland
d.mozyrska@pb.edu.pl
Department Of Mathematics,
University Of Aveiro,
3810193 Aveiro,
Portugal
ewa@ua.pt
Department Of Mathematics,
University Of Aveiro,
3810193 Aveiro,
Portugal
delfim@ua.pt
Abstract:
We study the process of integration on time scales in the sense of RiemannStieltjes. Analogues of the classical properties are proved for a generic time scale, and examples are given
Paper's Title:
On the product of Mmeasures in lgroups
Author(s):
A. Boccuto, B. Riěcan, and A. R. Sambucini
Dipartimento di Matematica e Informatica,
via Vanvitelli, 1 I06123 Perugia,
Italy.
boccuto@dipmat.unipg.it
URL:
http://www.dipmat.unipg.it/~boccuto
Katedra Matematiky, Fakulta Prírodných Vied,
Univerzita Mateja Bela,
Tajovského, 40, Sk97401 Banská Bystrica,
Slovakia.
riecan@fpv.umb.sk
Dipartimento di Matematica e Informatica,
via Vanvitelli, 1 I06123 Perugia,
Italy.
matears1@unipg.it
URL:
http://www.unipg.it/~matears1
Abstract:
Some extensiontype theorems and compactness
properties for the
product of lgroupvalued Mmeasures are proved.
Paper's Title:
Multilinear Fractional Integral Operators on Herz Spaces
Author(s):
Yasuo KomoriFuruya
School of High Technology and Human Welfare,
Tokai University,
317 Nishino Numazu Shizuoka, 4100395
Japan
Abstract:
We prove the boundedness of the multilinear fractional integral operators of Kenig and Stein type on Herz spaces. We also show that our results are optimal.
Paper's Title:
A Generalization of Ostrowski's Inequality for Functions of Bounded Variation via a Parameter
Author(s):
Seth Kermausuor
Department of Mathematics and Computer
Science,
Alabama State University,
Montgomery, AL 36101,
USA.
Email:
skermausour@alasu.edu
Abstract:
In this paper, we provide a generalization of the Ostrowski's inequality for functions of bounded variation for k points via a parameter λ∈[0,1]. As a by product, we consider some particular cases to obtained some interesting inequalities in these directions. Our results generalizes some of the results by Dragomir in [S. S. DRAGOMIR, The Ostrowski inequality for mappings of bounded variation, Bull. Austral. Math. Soc., 60 (1999), pp. 495508.]
Paper's Title:
Numerical Solution of Certain Types of FredholmVolterra IntegroFractional Differential Equations via Bernstein Polynomials
Author(s):
Alias B. Khalaf^{1}, Azhaar H. Sallo^{2} and Shazad S. Ahmed^{3}
^{1}Department
of Mathematics, College of Science,
University of Duhok,
Kurdistan Region,
Iraq.
Email: aliasbkhalaf@uod.ac
^{2}Department
of Mathematics, College of Science,
University of Duhok,
Kurdistan Region,
Iraq.
Email: azhaarsallo@uod.ac
^{3}Department
of Mathematics, College of Science,
University of Sulaimani,
Kurdistan Region,
Iraq.
Email: shazad.ahmed@univsul.edu
Abstract:
In this article we obtain a numerical solution for a certain fractional order integrodifferential equations of FredholmVolterra type, where the fractional derivative is defined in Caputo sense. The properties of Bernstein polynomials are applied in order to convert the fractional order integrodifferential equations to the solution of algebraic equations. Some numerical examples are investigated to illustrate the method. Moreover, the results obtained by this method are compared with the exact solution and with the results of some existing methods as well.
Search and serve lasted 0 second(s).