


Paper's Title:
Parachaotic Tuples of Operators
Author(s):
Bahmann Yousefi and Javad Izadi
Department of Mathematics,
Payame Noor University,
P.O. Box 193953697, Tehran,
Iran
b_yousefi@pnu.ac.ir
javadie2003@yahoo.com
Abstract:
In this paper, we introduce parachaotic tuples of operators and we give some relations between parachaoticity and Hypercyclicity Criterion for a tuple of operators.
Paper's Title:
On the HyersUlam Stability of Homomorphisms and Lie Derivations
Author(s):
Javad Izadi and Bahmann Yousefi
Department of Mathematics, Payame Noor
University,
P.O. Box: 193953697, Tehran,
Iran.
Email: javadie2003@yahoo.com,
b_yousefi@pnu.ac.ir
Abstract:
Let A be a Lie Banach^{*}algebra. For each elements (a, b) and (c, d) in A^{2}:= A * A, by definitions
(a, b) (c, d)= (ac, bd),
(a, b)= a+ b,
(a, b)^{*}= (a^{*}, b^{*}),
A^{2} can be considered as a Banach^{*}algebra. This Banach^{*}algebra is called a Lie Banach^{*}algebra whenever it is equipped with the following definitions of Lie product:
for all a, b, c, d in A. Also, if A is a Lie Banach^{*}algebra, then D: A^{2}→A^{2} satisfying
D ([ (a, b), (c, d)])= [ D (a, b), (c, d)]+ [(a, b), D (c, d)]
for all $a, b, c, d∈A, is a Lie derivation on A^{2}. Furthermore, if A is a Lie Banach^{*}algebra, then D is called a Lie^{*} derivation on A^{2} whenever D is a Lie derivation with D (a, b)^{*}= D (a^{*}, b^{*}) for all a, b∈A. In this paper, we investigate the HyersUlam stability of Lie Banach^{*}algebra homomorphisms and Lie^{* }derivations on the Banach^{*}algebra A^{2}.
Paper's Title:
Some Properties on a Class of pvalent Functions Involving Generalized Differential Operator
Author(s):
A. T. Yousef, Z. Salleh and T. AlHawary
Department of Mathematics,
Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia
Terengganu,
21030 Kuala Nerus, Terengganu,
Malaysia.
Email: abduljabaryousef@gmail.com,
zabidin@umt.edu.my
Department of Applied Science,
Ajloun College, AlBalqa Applied University,
Ajloun 26816,
Jordan.
Email: tariq_amh@yahoo.com
Abstract:
This paper aiming to introduce a new differential operator in the open unit disc We then, introduce a new subclass of analytic function Moreover, we discuss coefficient estimates, growth and distortion theorems, and inclusion properties for the functions belonging to the class
Paper's Title:
Coefficient Estimates Of Sakaguchi Kind Functions Using Lucas Polynomials
Author(s):
H. Priya and B. Srutha Keerthi
Department of Mathematics,
School of Advanced Sciences,
VIT Chennai Campus,
Chennai  600 048,
India.
Email:
priyaharikrishnan18@gmail.com
Department of Mathematics,
School of Advanced Sciences,
VIT Chennai Campus,
Chennai  600 048,
India.
Email: isruthilaya06@yahoo.co.in
Abstract:
By means of (p,q) Lucas polynomials, we estimate coefficient bounds and FeketeSzego inequalities for functions belonging to this class. Several corollaries and consequences of the main results are also obtained.
Paper's Title:
Fractional Integral Inequalities of HermiteHadamard Type for Pconvex and QuasiConvex Stochastic Process
Author(s):
Oualid Rholam, Mohammed Barmaki and Driss Gretet
National School of Applied Sciences (ENSA),
University Ibn Tofail,
B.P 242 Kenitra 14000,
phone number : +212606257757,
Morocco.
Email: oualid.rholam@uit.ac.ma
Science Faculty Ben M'sik,
University Hassan II,
B.P 7955 Av Driss El Harti Sidi Othmane 20700,
phone number : +212 5 22 70 46 71 ,
Morocco.
Email: mohammed.barmaki@uit.ac.ma
National School of Applied Sciences (ENSA),
University Ibn Tofail,
B.P 242 Kenitra 14000,
phone number : +212661403557,
Morocco.
Email: driss.gretete@uit.ac.ma
Abstract:
In this paper we consider the class of Pconvex and Quasiconvex stochastic processes on witch we apply a general class of generalized fractional integral operator in order to establish new integral inequalities of HermiteHadammard type. then we obtain some results for well known types of fractional integrals. Results obtained in this paper may be starting point as well as a useful source of inspiration for further research in convex analysis.
Search and serve lasted 1 second(s).