

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 9, Issue 1, Article 20, pp. 1-8, 2012

PARA-CHAOTIC TUPLES OF OPERATORS

BAHMANN YOUSEFI AND JAVAD IZADI

Received 22 December, 2011; accepted 13 March, 2012; published 29 June, 2012.

DEPARTMENT OF MATHEMATICS, PAYAME NOOR UNIVERSITY, P.O. BOX 19395-3697, TEHRAN IRAN b_yousefi@pnu.ac.ir javadie2003@yahoo.com

ABSTRACT. In this paper, we introduce para-chaotic tuples of operators and we give some relations between para-chaoticity and Hypercyclicity Criterion for a tuple of operators.

Key words and phrases: Tuple; Hypercyclic vector; Hypercylicity Criterion; Periodic point; Para-chaotic tuple.

2000 Mathematics Subject Classification. Primary 47B37. Secondary 47B33.

ISSN (electronic): 1449-5910

^{© 2012} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

By an n-tuple of operators we mean a finite sequence of length n of commuting continuous linear operators on a Banach space X.

Definition 1.1. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be an n-tuple of operators acting on an infinite dimensional Banach space X. We will let

$$\mathcal{F} = \{T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} : k_i \ge 0, i = 1, \dots, n\}$$

be the semigroup generated by \mathcal{T} . For $x \in X$, the orbit of x under the tuple \mathcal{T} is the set

$$Orb(\mathcal{T}, x) = \{Sx : S \in \mathcal{F}\}.$$

A vector x is called a hypercyclic vector for \mathcal{T} if $Orb(\mathcal{T}, x)$ is dense in X and in this case the tuple \mathcal{T} is called hypercyclic. The set of all hypercyclic vectors of \mathcal{T} is denoted by $HC(\mathcal{T})$. Also, for all $k \ge 2$, by $\mathcal{T}_d^{(k)}$ we will refer to the set of all k copies of an element of \mathcal{F} , i.e.

$$\mathcal{T}_d^{(k)} = \{S_1 \oplus \dots \oplus S_k : S_1 = \dots = S_k \in \mathcal{F}\}.$$

We say that $\mathcal{T}_d^{(k)}$ is hypercyclic provided there exist $x_1, ..., x_k \in X$ such that

$$\{W(x_1 \oplus \ldots \oplus x_k) : W \in \mathcal{T}_d^{(k)}\}$$

is dense in the k copies of $X, X \oplus ... \oplus X$.

Note that if $T_1, T_2, ..., T_n$ are commutative bounded linear operators on a Banach space X, and $\{m_i(i)\}_i$, is a sequence of natural numbers for i = 1, ..., n, then we say

$$\{T_1^{m_j(1)}T_2^{m_j(2)}...T_n^{m_j(n)}: j \ge 0\}$$

is hypercyclic if there exists $x \in X$ such that

$$\{T_1^{m_j(1)}T_2^{m_j(2)}...T_n^{m_j(n)}x: j \ge 0\}$$

is dense in X.

Definition 1.2. We say that a tuple $\mathcal{T} = (T_1, T_2, ..., T_n)$ is topologically transitive with respect to a tuple of nonnegative integer sequences

$$(\{k_{j(1)}\}_j, \{k_{j(2)}\}_j, ..., \{k_{j(n)}\}_j),$$

if for every nonempty open subsets U, V of X there exists $j_0 \in \mathbb{N}$ such that

$$T_1^{k_{j_0}(1)}T_2^{k_{j_0}(2)}...T_n^{k_{j_0}(n)}(U) \cap V \neq \emptyset.$$

Also, we say that an n-tuple \mathcal{T} is topologically transitive if it is topologically transitive with respect an n-tuple of nonnegative integer sequences. Similarly, We say that $\mathcal{T}_d^{(2)}$ is topologically transitive provided for any given nonempty open sets U_1, V_1, U_2, V_2 in X, there exist two positive integers m_i , i = 1, ..., n, such that

$$T_1^{m_1}T_2^{m_2}...T_n^{m_n}(U_1) \cap V_1 \neq \emptyset$$

and

$$T_1^{m_1}T_2^{m_2}\dots T_n^{m_n}(U_2)\cap V_2\neq \emptyset$$

Definition 1.3. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be a tuple of bounded linear operators acting on a separable infinite dimensional Banach space X. Then, $x \in X$ is called a periodic point of \mathcal{T} if there exists a tuple $(m_1, m_2, ..., m_n)$ of nonnegative integers such that

$$T_1^{m_1}T_2^{m_2}...T_n^{m_n}x = x.$$

Definition 1.4. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be a tuple of continuous linear operators acting on a separable infinite dimensional Banach space X. A point $x \in X$ is said almost periodic for \mathcal{T} if $Orb(\mathcal{T}, x)$ is precompact.

Definition 1.5. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be a tuple of continuous linear operators acting on a separable infinite dimensional Banach space X. We say that \mathcal{T} is chaotic if it is hypercyclic and admits a dense set of periodic points. Also, we say that \mathcal{T} is para-chaotic if \mathcal{T} contains a dense set of periodic points and for any positive integers $j_1, j_2, ..., j_n$, the sequence

$$\{T_1^{mj_1}T_2^{mj_2}...T_n^{mj_n}:\ m=0,1,...\}$$

is hypercyclic.

A nice criterion namely the Hypercyclicity Criterion was developed independently by Kitai [15], Gethner and Shapiro [12]. This criterion has used to show that hypercyclic operators arise within the class of composition operators [6], weighted shifts [18], adjoints of multiplication operators [7], and adjoints of subnormal and hyponormal operators [5], and hereditarily operators [4], and topologically mixing operators [8]. The formulation of the Hypercyclicty Criterion for a pair of operators was given by N. S. Feldman [11]. Here, we want to extend some properties of hypercyclic operators to a tuple of commuting operators. For some topics we refer to [1]–[29].

2. MAIN RESULTS

In this section we characterize the relation between the Hypercyclicity Criterion and a chaotic tuple.

Lemma 2.1. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be a tuple of continuous operators acting on a separable infinite dimensional Banach space X. Then \mathcal{T} is topologically transitive if and only if it is hypercyclic.

Proof. Let \mathcal{T} be topologically transitive and fix an enumeration $\{B_n : n \in \mathbb{N}\}$ of the open balls in X with rational radii, and centers in a countable dense subset of X. By the continuity of the operators T_i , i = 1, ..., n, the sets

$$G_j = \bigcup \{T_1^{-k(1)} T_2^{-k(2)} \dots T_n^{-k(n)} (B_j) : k(i) \ge 0; \ i = 1, \dots, n\}$$

are open. Clearly, $HC(\mathcal{T})$ is equal to $\bigcap \{G_j : j \in \mathbb{N}\}$. Now, let W be an arbitrary nonempty open set in X. Then, for all $m \in \mathbb{N}$ and i = 1, ..., n, there exist $k_m(i)$ in N such that

$$T_1^{k_m(1)}T_2^{k_m(2)}...T_n^{k_m(n)}(W) \cap B_m \neq \emptyset,$$

which implies that $W \cap G_m \neq \emptyset$ for all m. Thus each G_m is dense and so $HC(\mathcal{T})$ is also dense in X. In particular, $HC(\mathcal{T})$ is nonempty and so \mathcal{T} is hypercyclic. Conversely, let \mathcal{T} be hypercyclic and (U, V) be a pair of nonempty open subsets of X. Let $x \in HC(\mathcal{T})$. Since $Orb(\mathcal{T}, x) \subset HC(\mathcal{T})$, thus $HC(\mathcal{T})$ is dense and so the sets $U \cap HC(\mathcal{T})$ and $V \cap HC(\mathcal{T})$ are nonempty. Choose $x \in U \cap HC(\mathcal{T})$ and $y \in V \cap HC(\mathcal{T})$. Since $V \cap Orb(\mathcal{T}, x)$ is nonempty, thus there there exists a tuple $m_1, m_2, ..., m_n$ of integers such that

$$T_1^{m_1}T_2^{m_2}...T_n^{m_n}(x) \in V \cap HC(\mathcal{T}),$$

and so

$$T_1^{m_1}T_2^{m_2}...T_n^{m_n}(U) \cap V \neq \emptyset.$$

Thus \mathcal{T} is topologically transitive. This completes the proof.

Note that, \mathcal{T} is said to satisfy the Hypercyclicity Criterion if it satisfies the hypothesis of the following theorem.

Theorem 2.2. (Hypercyclicity Criterion for tuples) Suppose that X is a separable infinite dimensional Banach space and $\mathcal{T} = (T_1, T_2, ..., T_n)$ be the n-tuple of operators $T_1, T_2, ..., T_n$ acting on X. If there exist two dense subsets Y and Z in X, and strictly increasing sequences $\{m_{j(i)}\}_j$ for i = 1, ..., n such that :

1. $T_1^{m_{j(1)}} ... T_n^{m_{j(n)}} y \to 0$ for all $y \in Y$ 2. There exist a sequence of functions $\{S_j : Z \to X\}$ such that for every $z \in Z$, $S_j z \to 0$, and $T_1^{m_{j(1)}} ... T_n^{m_{j(n)}} S_j z \to z$, then \mathcal{T} is a hypercyclic tuple.

Proof. Let U and V be two nonempty open sets in X and choose $y \in Y \cap U$ and $z \in Z \cap V$. Define $x_j = y + S_j z$. Then $x_j \to y$ and we have

$$T_1^{m_{j(1)}} \dots T_n^{m_{j(n)}} x_j = T_1^{m_{j(1)}} \dots T_n^{m_{j(n)}} y + T_1^{m_{j(1)}} \dots T_n^{m_{j(n)}} S_j z$$

which tends to z as $j \to \infty$. Thus for large j, we have $x_j \in U$ and

$$T_1^{m_{j(1)}} \dots T_n^{m_{j(n)}} x_j \in V.$$

Hence we get

$$T_1^{m_{j(1)}} \dots T_n^{m_{j(n)}}(U) \cap V \neq \emptyset$$

and so \mathcal{T} is topologically transitive. Thus by Lemma 2.1, \mathcal{T} is a hypercyclic tuple. This completes the proof.

Proposition 2.3. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be a tuple of bounded linear operators acting on a separable infinite dimensional Banach space X and $HC(\mathcal{T}) \neq \emptyset$. If there exists a dense set of almost periodic points for \mathcal{T} , then \mathcal{T} satisfies the Hypercyclicity Criterion.

Proof. Denote the dense subset of almost periodic points of \mathcal{T} by D. Let $x \in HC(\mathcal{T})$ and define $U_k = B(0, 1/k)$ and $V_k = B(x, 1/k)$. Since \mathcal{T} is hypercyclic, thus there exists a tuple

$$({m_k^{(1)}}_k, {m_k^{(2)}}_k, ..., {m_k^{(n)}}_k)$$

of integer sequences such that

$$T_1^{m_k^{(1)}} T_2^{m_k^{(2)}} \dots T_n^{m_k^{(n)}} (U_k) \cap V_k \neq \emptyset.$$

Since $\overline{HC(\mathcal{T})} = X$ and

$$T_1^{-m_k^{(1)}} T_2^{-m_k^{(2)}} \dots T_n^{-m_k^{(n)}} (V_k) \cap U_k \neq \emptyset,$$

thus there exists a hypercyclic vector u_k such that $u_k \to 0$ and

$$T_1^{m_k^{(1)}} T_2^{m_k^{(2)}} \dots T_n^{m_k^{(n)}}(u_k) \in V_k$$

for all k. Also, note that since $\overline{D} = X$, thus $D \cap B(x, 1/2k) \neq \emptyset$. Now choose $y \in D \cap B(x, 1/2k)$. Since $Orb(\mathcal{T}, y)$ is precompact, there exist a tuple of subsequences

$$(\{m_{k_j}^{(1)}\}_j, \{m_{k_j}^{(2)}\}_j, ..., \{m_{k_j}^{(n)}\}_j)$$

of the tuple of sequences

$$(\{m_k^{(1)}\}_k, \{m_k^{(2)}\}_k, ..., \{m_k^{(n)}\}_k),$$

and $y_0 \in X$, $k_0 \in \mathbb{N}$ such that

$$\|T_1^{m_{k_j}^{(1)}}T_2^{m_{k_j}^{(2)}}...T_n^{m_{k_j}^{(n)}}(y) - y_0\| \le 1/2k$$

for all $j \geq k_0$.

But, $Orb(\mathcal{T}, x)$ is dense in X, thus there exists a tuple of integers $(m_0^{(1)}, m_0^{(2)}, ..., m_0^{(n)})$ such that

$$||T_1^{m_0^{(1)}}T_2^{m_0^{(2)}}...T_n^{m_0^{(n)}}(x) + y_0|| \le 1/2k.$$

Note that

$$T_1^{m_k^{(1)}} T_2^{m_k^{(2)}} \dots T_n^{m_k^{(n)}} u_k \to x,$$

thus we can choose a tuple of large enough integers

$$(m_{k_{j_0}}^{(1)}, m_{k_{j_0}}^{(2)}, ..., m_{k_{j_0}}^{(n)}) \in (\{m_{k_j}^{(1)}\}_j, \{m_{k_j}^{(2)}\}_j, ..., \{m_{k_j}^{(n)}\}_j)$$

with $j_0 \ge k_0$ such that

$$||u_{k_{j_0}}|| \le 1/(2k||T_1^{m_0^{(1)}}T_2^{m_0^{(2)}}...T_n^{m_0^{(n)}}||)^{-1}$$

and

$$\|T_1^{m_0^{(1)}}T_2^{m_0^{(2)}}\dots T_n^{m_0^{(n)}}T_1^{m_{k_{j_0}}^{(1)}}T_2^{m_{k_{j_0}}^{(2)}}\dots T_n^{m_{k_{j_0}}^{(n)}}u_{k_{j_0}}+y_0\| \le 1/2k.$$

Set

$$w = y + T_1^{m_0^{(1)}} T_2^{m_0^{(2)}} \dots T_n^{m_0^{(n)}} u_{k_{j_0}}$$

Thus,

$$||w - x|| \le ||y - x|| + ||T_1^{m_0^{(1)}} T_2^{m_0^{(2)}} \dots T_n^{m_0^{(n)}} u_{k_{j_0}}|| < 1/k$$

and so, $w \in V_k$. Therefore, we have

$$\begin{split} \|T_{1}^{m_{k_{j_{0}}}^{(1)}}T_{2}^{m_{k_{j_{0}}}^{(2)}}...T_{n}^{m_{k_{j_{0}}}^{(n)}}w\| &= \|T_{1}^{m_{k_{j_{0}}}^{(1)}}...T_{n}^{m_{k_{j_{0}}}^{(n)}}y + T_{1}^{m_{k_{j_{0}}}^{(1)}}...T_{n}^{m_{k_{j_{0}}}^{(n)}}T_{1}^{m_{0}^{(1)}}...T_{n}^{m_{0}^{(n)}}u_{k_{j_{0}}}\| \\ &\leq \|T_{1}^{m_{k_{j_{0}}}^{(1)}}...T_{n}^{m_{k_{j_{0}}}^{(n)}}(y) - y_{0}\| \\ &+ \|T_{1}^{m_{k_{j_{0}}}^{(1)}}...T_{n}^{m_{k_{j_{0}}}^{(n)}}T_{1}^{m_{0}^{(1)}}...T_{n}^{m_{0}^{(n)}}(u_{k_{j_{0}}}) + y_{0}\| \\ &< 1/2k + 1/2k = 1/k. \end{split}$$

So

$$T_1^{m_{k_{j_0}}^{(1)}} T_2^{m_{k_{j_0}}^{(2)}} \dots T_n^{m_{k_{j_0}}^{(n)}} w \in U_k.$$

Thus we get

$$T_{1}^{m_{k_{j_{0}}}^{(1)}}T_{2}^{m_{k_{j_{0}}}^{(2)}}...T_{n}^{m_{k_{j_{0}}}^{(n)}}(V_{k}) \cap U_{k} \neq \emptyset$$

and this completes the proof. \blacksquare

Corollary 2.4. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be a tuple of bounded linear operators acting on a separable infinite dimensional Banach space X. Then $\mathcal{T}_d^{(2)}$ is hypercyclic if and only if for given four nonempty open subsets U_1, U_2, V_1, V_2 of X, there exists a tuple of integers $(m_1, m_2, ..., m_n)$ such that the sets $T_1^{m_1}T_2^{m_2}...T_n^{m_n}(U_1) \cap V_1$ and $T_1^{m_1}T_2^{m_2}...T_n^{m_n}(U_2) \cap V_2$ are nonempty.

Theorem 2.5. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be a tuple of continuous linear operators acting on a separable infinite dimensional Banach space X. If \mathcal{T} is para-chaotic, then $\mathcal{T}_d^{(2)}$ is topologically transitive.

Proof. To show that $\mathcal{T}_d^{(2)}$ is topologically transitive, consider the nonempty open sets U_1, U_2, V_1 and V_2 in X. Since \mathcal{T} is hypercyclic, by Lemma 2.1, there exists a tuple $(m_1, m_2, ..., m_n)$ of integers large enough such that

$$T_1^{m_1}T_2^{m_2}\dots T_n^{m_n}(U_1)\cap V_1\neq \emptyset.$$

So,

$$T_1^{-m_1}T_2^{-m_2}...T_n^{-m_n}(V_1) \cap U_1$$

is a nonempty open set, and since \mathcal{T} contains a dense set of periodic points, thus there exists a periodic point $u_1 \in U_1$ such that

$$T_1^{m_1}T_2^{m_2}...T_n^{m_n}u_1 \in V_1$$

and

$$T_1^{p_1}T_2^{p_2}\dots T_n^{p_n}u_1 = u_1$$

for some $p_1, ..., p_n \in \mathbb{N}$.

On the other hand, since

$$\{T_1^{ip_1}T_2^{ip_2}...T_n^{ip_n}: i=0,1,...\}$$

is hypercyclic, thus there exists $i \in \mathbb{N}$ such that

$$T_1^{ip_1}T_2^{ip_2}...T_n^{ip_n}(U_2) \cap T_1^{-m_1}T_2^{-m_2}...T_n^{-m_n}(V_2) \neq \emptyset.$$

Define $r_j = m_j + ip_j$ for j = 1, ..., n, then

$$T_1^{r_1}T_2^{r_2}...T_n^{r_n}(U_2) \cap V_2 = T_1^{m_1+ip_1}T_2^{m_2+ip_2}...T_n^{m_n+ip_n}(U_2) \cap V_2$$

is nonempty, since

$$T_1^{ip_1}T_2^{ip_2}...T_n^{ip_n}(U_2) \cap T_1^{-m_1}T_2^{-m_2}...T_n^{-m_n}(V_2)$$

is nonempty. Also, since

$$\begin{array}{lll} T_1^{r_1}T_2^{r_2}...T_n^{r_n}u_1 &=& T_1^{m_1}T_2^{m_2}...T_n^{m_n}T_1^{ip_1}T_2^{ip_2}...T_n^{ip_n}u_1 \\ &=& T_1^{m_1}T_2^{m_2}...T_n^{m_n}u_1 \in V_1, \end{array}$$

thus

$$T_1^{r_1}T_2^{r_2}\dots T_n^{r_n}(U_1)\cap V_1\neq \emptyset.$$

This completes the proof.

Theorem 2.6. Let $\mathcal{T} = (T_1, T_2, ..., T_n)$ be a tuple of continuous linear operators acting on a separable infinite dimensional Banach space X. If \mathcal{T} is para-chaotic, then \mathcal{T} satisfies the Hypercyclicity Criterion.

Proof. By Theorem 2.5, $\mathcal{T}_d^{(2)}$ is topologically transitive. This implies that \mathcal{T} satisfies the Hypercyclicity Criterion. Indeed, let $x \oplus y$ be a hypercyclic vector for $\mathcal{T}_d^{(2)}$. In particular, x and y are hypercyclic for \mathcal{T} . Thus for all tuple of nonnegative integers $(m_1, m_2, ..., m_n)$, the vector $T_1^{m_1}T_2^{m_2}...T_n^{m_n}y$ is hypercyclic for \mathcal{T} and so

$$(x, T_1^{m_1}T_2^{m_2}...T_n^{m_n}y)$$

is a hypercyclic vector for $\mathcal{T}_d^{(2)}$. This implies that for all nonempty open subset U of X, there is $u \in U$ such that (x, u) is a hypercyclic vector for $\mathcal{T}_d^{(2)}$. Fix now $\{U_k\}_{k\geq 1}$ a decreasing 0-basis in X. Proceeding by induction we find $u_k \in U_k$ for all $k \in \mathbb{N}$, and increasing sequences $\{m_k^{(i)}\}_k$ (i = 1, ..., n) of natural numbers satisfying

$$T_1^{m_k^{(1)}} T_2^{m_k^{(2)}} \dots T_n^{m_k^{(n)}} x \in U_k$$

6

and

$$T_1^{m_k^{(1)}} T_2^{m_k^{(2)}} \dots T_n^{m_k^{(n)}} u_k \in x + U_k$$

for all $k \in \mathbb{N}$. Let $X_0 = Orb(\mathcal{T}, x)$ which is dense in X. Then we have that

$$T_1^{m_k^{(1)}} T_2^{m_k^{(2)}} \dots T_n^{m_k^{(n)}} x \to 0$$

and so

$$T_1^{m_k^{(1)}} T_2^{m_k^{(2)}} \dots T_n^{m_k^{(n)}} v \to 0$$

for all $v \in X$. Define

$$S_k(T_1^{m_1}T_2^{m_2}...T_n^{m_n}x) = T_1^{m_1}T_2^{m_2}...T_n^{m_n}u_k$$

for all m_i , i = 1, ..., n, and all k in N. Then $S_k v \to 0$ for all $v \in X_0$. Finally, given $m_0^{(1)}, m_0^{(2)}, ..., m_0^{(n)} \in \mathbb{N}$, we get

$$T_1^{m_k^{(1)}} \dots T_n^{m_k^{(n)}} S_k(T_1^{m_0^{(1)}} \dots T_n^{m_0^{(n)}} x) = T_1^{m_0^{(1)}} \dots T_n^{m_0^{(n)}} (T_1^{m_k^{(1)}} \dots T_n^{m_k^{(n)}} u_k)$$

which tends to $T_1^{m_0^{(1)}}T_2^{m_0^{(2)}}...T_n^{m_0^{(n)}}x$ as $k \to \infty$, so the proof is complete.

REFERENCES

- [1] S. I. ANSARI and P. S. BOURDON, Some properties of cyclic operators, *Acta Sci. Math.*, **63** (1997), pp. 195–207.
- [2] F. BAYART and S. GRIVAUX, Frequently hypercyclic operators, *Transactions of the American Mathematical Society*, 358 (11) (2006), pp. 5083–5117.
- [3] F. BAYART and E. MATHERON, *Dynamics of Linear Operators*, Cambridge University Press, 2009.
- [4] J. BES and A. PERIS, Hereditarily hypercyclic operators, J. Func. Anal., 167 (1) (1999), pp. 94–112.
- [5] P. S. BOURDON, Orbits of hyponormal operators, Mich. Math. Journal, 44 (1997), pp. 345–353.
- [6] P. S. BOURDON and J. H. SHAPIRO, Cyclic phenomena for composition operators, *Memoirs of the Amer. Math. Soc.*, 125, Amer. Math. Soc. Providence, RI, 1997.
- [7] P. S. BOURDON and J. H. SHAPIRO, Hypercyclic operators that commute with the Bergman backward shift, *Trans. Amer. Math. Soc.*, 352 (2000), pp. 5293–5316.
- [8] G. COSTAKIS and M. SAMBARINO, Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc., 132 (2003), pp. 385–389.
- [9] N. S. FELDMAN, Countably hypercyclic operators, *Journal of Operator Theory*, **273** (2002), pp. 67–74.
- [10] N. S. FELDMAN, Hypercyclic pairs of coanalytic Toeplitz operators, *Integral Equations Operator Theory*, 58 (20) (2007), pp. 153–173.
- [11] N. S. FELDMAN, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Appl., 346 (2008), pp. 82–98.
- [12] R. M. GETHNER and J. H. SHAPIRO, Universal vectors for operators on spaces of holomorphic functions, *Proc. Amer. Math. Soc.*, **100** (1987), pp. 281–288.
- [13] G. GODEFROY and J. H. SHAPIRO with dense invariant cyclic manifolds, J. Func. Anal., 98 (1991), pp. 229–269.
- [14] S. GRIVAUX, Hypercyclic operators, mixing operators and the bounded steps problem, J. Operator Theory, 54 (2005), pp. 147–168.

AJMAA

- [15] C. KITAI, Invariant closed sets for linear operators, Dissertation, Univ. of Toronto, 1982.
- [16] F. LEON-SAAVEDRA, Notes about the hypercyclicity criterion, *Math. Slovaca*, **53** (2003), pp. 313–319.
- [17] H. PETERSSON, Topologies for which every nonzero vector is hypercyclic, *Journal of Mathematical Analysis and Applications*, **327** (2) (2007), pp. 1431–1443.
- [18] H. N. SALAS, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347 (1995), pp. 993–1004.
- [19] E. SHI, Y. YAO, L. ZHOU, and Y. Zhou, Hereditarily hypercyclic operators and mixing, *Journal of Mathematical Analysis and Applications*, **330** (2007), pp. 237–244.
- [20] B. YOUSEFI, and H. REZAEI, Hypercyclicity on the algebra of Hilbert-Schmidt operators, *Results in Mathematics*, 46 (2004), pp. 174–180.
- [21] B. YOUSEFI, and H. REZAEI, Some necessary and sufficient conditions for Hypercyclicity Criterion, Proc. Indian Acad. Sci. (Math. Sci.), 115 (2) (2005), pp. 209–216.
- [22] B. YOUSEFI and A. FARROKHINIA, On the hereditarily hypercyclic vectors, *Journal of the Korean Mathematical Society*, 43 (6) (2006), pp. 1219–1229.
- [23] B. YOUSEFI, and H. REZAEI and J. DOROODGAR, Supercyclicity in the operator algebra using Hilbert-Schmidt operators, *Rendiconti Del Circolo Matematico di Palermo*, Serie II, Tomo LVI (2007), pp. 33–42.
- [24] B. YOUSEFI, and H. REZAEI, Hypercyclic property of weighted composition operators, *Proc. Amer. Math. Soc.*, **135** (10) (2007), pp. 3263–3271.
- [25] B. YOUSEFI and S. HAGHKHAH, Hypercyclicity of special operators on Hilbert function spaces, *Czechoslovak Mathematical Journal*, **57** (132) (2007), pp. 1035–1041.
- [26] B. YOUSEFI, and H. REZAEI, On the supercyclicity and hypercyclicity of the operator algebra, *Acta Mathematica Sinica*, **24** (7) (2008), pp. 1221–1232.
- [27] B. YOUSEFI and R. SOLTANI, Hypercyclicity of the adjoint of weighted composition operators, *Proc. Indian Acad. Sci. (Math. Sci.)*, **119** (3) (2009), pp. 513–519.
- [28] B. YOUSEFI and J. IZADI, Weighted composition operators and supercyclicity criterion, *Inter-national Journal of Mathematics and Mathematical Sciences*, 2011, DOI 10.1155/2011/514370 (2011).
- [29] B. YOUSEFI, Hereditarily transitive tuples, *Rend. Circ. Mat. Palermo*, 2011, DOI 10.1007/S12215-011-0066-y (2011).