


Paper's Title:
An Integration Technique for Evaluating Quadratic Harmonic Sums
Author(s):
J. M. Campbell and K.W. Chen
Department of Mathematics and Statistics,
York University, 4700 Keele St, Toronto,
ON M3J 1P3,
Canada.
Email: jmaxwellcampbell@gmail.com
Department of Mathematics, University of Taipei,
No. 1, AiGuo West Road,
Taipei 10048, Taiwan.
Email: kwchen@uTaipei.edu.tw
URL:
https://math.utaipei.edu.tw/p/412108222.php
Abstract:
The modified Abel lemma on summation by parts has been applied in many ways recently to determine closedform evaluations for infinite series involving generalized harmonic numbers with an upper parameter of two. We build upon such results using an integration technique that we apply to ``convert'' a given evaluation for such a series into an evaluation for a corresponding series involving squared harmonic numbers.
Paper's Title:
Simple Integral Representations for the Fibonacci and Lucas Numbers
Author(s):
Seán M. Stewart
Physical Science and Engineering Division,
King Abdullah
University of Science and Technology,
Thuwal 239556900,
Saudi
Arabia.
Email: sean.stewart@kaust.edu.sa
Abstract:
Integral representations of the Fibonacci numbers F_{kn + r} and the Lucas numbers L_{kn + r} are presented. Each is established using methods that rely on nothing beyond elementary integral calculus.
Paper's Title:
Relations Between Differentiability And Onesided Differentiability
Author(s):
Q. D. Gjonbalaj, V. R. Hamiti and L. Gjoka
Department of Mathematics, Faculty of
Electrical and Computer Engineering,
University of Prishtina "Hasan Prishtina",
Prishtine 10000, Kosova.
Email: qefsere.gjonbalaj@unipr.edu
{Department of Mathematics, Faculty of
Electrical and Computer Engineering,
University of Prishtina "Hasan Prishtina",
Prishtine 10000, Kosova.
Email: valdete.rexhebeqaj@unipr.edu
Department of Mathematical Engineering,
Polytechnic University of Tirana, Tirana,
Albania
Email: luigjgjoka@ymail.com
Abstract:
In this paper, we attempt to approach to the problem of connection between differentiation and oneside differentiation in a more simple and explicit way than in existing math literature. By replacing the condition of differentiation with onesided differentiation, more precisely with righthand differentiation, we give the generalization of a theorem having to do with Lebesgue’s integration of derivative of a function. Next, based on this generalized result it is proven that if a continuous function has bounded righthand derivative, then this function is almost everywhere differentiable, which implies that the set of points where the function is not differentiable has measure zero.
Paper's Title:
Fractional exp(φ(ξ)) Expansion Method and its Application to SpaceTime Nonlinear Fractional Equations
Author(s):
A. A. Moussa and L. A. Alhakim
Department of Management Information
System and Production Management,
College of Business and Economics, Qassim University,
P.O. BOX 6666, Buraidah: 51452,
Saudi Arabia.
Email: Alaamath81@gmail.com
URL:
https://scholar.google.com/citations?user=ccztZdsAAAAJ&hl=ar
Department of Management Information
System and Production Management,
College of Business and Economics, Qassim University,
P.O. BOX 6666, Buraidah: 51452,
Saudi Arabia.
Email: Lama2736@gmail.com
URL:
https://scholar.google.com/citations?user=OSiSh1AAAAAJ&hl=ar
Abstract:
In this paper, we mainly suggest a new method that depends on the fractional derivative proposed by Katugampola for solving nonlinear fractional partial differential equations. Using this method, we obtained numerous useful and surprising solutions for the spacetime fractional nonlinear WhithamBroerKaup equations and spacetime fractional generalized nonlinear HirotaSatsuma coupled KdV equations. The solutions obtained varied between hyperbolic, trigonometric, and rational functions, and we hope those interested in the reallife applications of the previous two equations will find this approach useful.
Search and serve lasted 1 second(s).