
Aust. J. Math. Anal. Appl.
Vol. 19 (2022), No. 2, Art. 2, 5 pp.
AJMAA

SIMPLE INTEGRAL REPRESENTATIONS FOR THE FIBONACCI AND LUCAS
NUMBERS

SEÁN M. STEWART

Received 26 August, 2021; accepted 2 August, 2022; published 26 August, 2022.

PHYSICAL SCIENCE AND ENGINEERING DIVISION , K ING ABDULLAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY, THUWAL 23955-6900, SAUDI ARABIA .
sean.stewart@kaust.edu.sa
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1. I NTRODUCTION

The representation of special numbers obtained from various counting sequences using an
integral is one of a number of important tools available in their analysis. Integral representations
for a range of classical counting numbers are known. Perhaps the greatest variety in integral
representations is to be found among the Catalan numbers [12, 2, 3, 4, 5, 11, 15, 13, 14, 10]. To
a lesser extent is the number of integral representations found for the Fibonacci numbers while
there is a distinct paucity of such representations for the Lucas numbers. Integral representations
for the Fibonacci numbers have been given recently by Glasser and Zhou [8] and Andrica and
Bagdasar [1, p. 132] while another for the even Fibonacci numbers was given two decades ago
by Dilcher [6]. Andrica and Bagdasar [1, p. 133] have given the only integral representation I
have managed to find in the literature for the Lucas numbers.

In this note we give new integral representations of the Fibonacci numbersFkn+r and the
Lucas numbersLkn+r. Heren ∈ Z>0 = {0, 1, 2, . . .} is a non-negative integer,k ∈ Z>0 =
{1, 2, 3, . . .} is an arbitrary but fixed positive integer, whiler ∈ Z>0 is an arbitrary but fixed
non-negative integer. In the past various integral representations for the Fibonacci numbers have
usually been established using advanced techniques such as using a complex analytic approach
based on a Fourier integral representation [8], using a method that relied on the (Gaussian) hy-
pergeometric function [6], or using a method that employs the Cauchy integral formula [1]. The
integral representations to be given here will be established using nothing beyond elementary
integral calculus.

Before proceeding we briefly recall some definitions and results we are going to have a need
for. As usual thenth Fibonacci numberFn is defined by the recurrence relationFn = Fn−1 +
Fn−2 for n > 2 with F0 = 0 andF1 = 1 while thenth Lucas numberLn is defined by the
recurrence relationLn = Ln−1 + Ln−2 for n > 2 with L0 = 2 andL1 = 1. Binet’s formula for
the Fibonacci numbers is [9, Thm. 5.5, p. 90]

(1.1) Fn =
1√
5

(
ϕn − (−1)n

ϕn

)
,

while Binet’s formula for the Lucas numbers is [9, Thm. 5.7, p. 93]

(1.2) Ln = ϕn +
(−1)n

ϕn
.

Hereϕ denotes the golden ratio(1 +
√

5)/2. From (1.1) and (1.2) one can see the connection
between the Fibonacci numbers, the Lucas numbers, and the golden ratio is

(1.3) ϕn =
Ln + Fn

√
5

2
.

An identity we need is [9, p. 117, Ex. 5.37]

(1.4) L2
n − 5F 2

n = 4(−1)n.

Finally, for m, r ∈ Z>0 the Fibonacci and Lucas index addition formulae are [7, 16]

(1.5) 2Fm+r = FrLm + LrFm,

and

(1.6) 2Lm+r = LmLr + 5FmFr,

respectively.
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2. I NTEGRAL REPRESENTATIONS

We first give integral representations for the Fibonacci numbersFkn and the Lucas numbers
Lkn. These are then used to establish integral representations for the Fibonacci numbersFkn+r

and the Lucas numbersLkn+r.

Theorem 2.1. For n ∈ Z>0 and arbitrary but fixedk ∈ Z>0, the Fibonacci numbersFkn can
be represented by the integral

(2.1) Fkn =
nFk

2n

∫ 1

−1

(
Lk + Fkx

√
5
)n−1

dx.

Proof. Direct elementary integration yields

nFk

2n

∫ 1

−1

(
Lk + Fkx

√
5
)n−1

dx =
1√
5

[(
Lk + Fkx

√
5

2

)n]1

−1

=
1√
5

[(
Lk + Fk

√
5

2

)n

−

(
Lk − Fk

√
5

2

)n]
.

Noting that

(2.2)
1

ϕm
=

2

Lm + Fm

√
5

=
2(Lm − Fm

√
5)

L2
m − 5F 2

m

=
(−1)m

2

(
Lm − Fm

√
5
)

,

wherem ∈ Z>0 and the result given in (1.4) has been used, allows one to write

nFk

2n

∫ 1

−1

(
Lk + Fkx

√
5
)n−1

dx =
1√
5

(
ϕkn − (−1)kn

ϕkn

)
= Fkn,

where (1.3) together with the result for Binet’s formula for the Fibonacci numbers given by
(1.1) withn replaced withkn have been used, and completes the proof.

Remark 2.1. Settingk = 2 in (2.1) gives

(2.3) F2n =
n

2n

∫ 1

−1

(
3 + x

√
5
)n−1

dx,

an integral representation of the even Fibonacci numbers and corresponds to the result found
by Dilcher using an approach that relied on the (Gaussian) hypergeometric function [6]. We
should note Dilcher’s result is presented as a trigonometric integral that is obtained by making a
substitution ofx = cos t in (2.3). An integral representation of the odd Fibonacci numbers can
be readily found. Using the obvious identityF2n+1 = F2n+2 − F2n, a reindexing ofn 7→ n + 1
in (2.3), the difference between this result and (2.3) produces

(2.4) F2n+1 =
1

2n+1

∫ 1

−1

(
n + 3 + (n + 1)x

√
5
)(

3 + x
√

5
)n−1

dx.

Remark 2.2. Indeed, (2.1) can be seen as a thinly disguised form of Binet’s formula forFkn

with the connection becoming obvious if we write

Fkn =
n√
5

∫ ϕk

1

(−ϕ)k

tn−1 dt,

and substitutet = (Lk + Fkx
√

5)/2.
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Theorem 2.2. For n ∈ Z>0 and arbitrary but fixedk ∈ Z>0, the Lucas numbersLkn can be
represented by the integral

(2.5) Lkn =
1

2n

∫ 1

−1

(
Lk + Fk(n + 1)x

√
5
)(

Lk + Fkx
√

5
)n−1

dx.

Proof. Denote the integral to be found byI. Integrating by parts, we have

I =
1

nFk

√
5

[(
Lk + Fkx

√
5

2

)n (
Lk + Fk(n + 1)x

√
5
)]1

−1

− n + 1

n2n

∫ 1

−1

(
Lk + Fkx

√
5
)n

dx

=
1

nFk

√
5

(
Lk + Fk

√
5

2

)n (
Lk + Fk(n + 1)

√
5
)

− 1

nFk

√
5

(
Lk − Fk

√
5

2

)n (
Lk − Fk(n + 1)

√
5
)
− 2

nFk

Fkn+k,

where in the last line the result for the integral given by (2.1) withn 7→ n + 1 has been used.
Applying (1.3) and (2.2) before expanding, followed by the application of both Binet formulae
(1.1) and (1.2) withn replaced withkn leads to

I =
1

nFk

(LkFkn + (n + 1)FkLkn − 2Fkn+k) = Lkn.

Here application of the Fibonacci index addition formula given in (1.5) has been made withm
replaced withkn, and completes the proof.

Theorem 2.3. For n ∈ Z>0 and arbitrary but fixedk ∈ Z>0 and r ∈ Z>0, the Fibonacci
numbersFkn+r can be represented by the integral

(2.6) Fkn+r =
1

2n+1

∫ 1

−1

(
nFkLr + FrLk + FkFr(n + 1)x

√
5
)(

Lk + Fkx
√

5
)n−1

dx.

Proof. The Fibonacci index addition formula given by (1.5) withm replaced withkn produces
2Fkn+r = FknLr + FrLkn. The result immediately follows on substituting for the integral
representations ofFkn andLkn given by (2.1) and (2.5) respectively into the given index addition
formula, and completes the proof.

Remark 2.3. Notice the result for the integral representation of the odd Fibonacci numbers
given by (2.4) is recovered from (2.6) on setting(k, r) = (2, 1).

Theorem 2.4. For n ∈ Z>0 and arbitrary but fixedk ∈ Z>0 andr ∈ Z>0, the Lucas numbers
Lkn+r can be represented by the integral

(2.7) Lkn+r =
1

2n+1

∫ 1

−1

(
5nFkFr + LkLr + FrLr(n + 1)x

√
5
)(

Lk + Fkx
√

5
)n−1

dx.

Proof. The Lucas index addition formula given by (1.6) withm replaced withkn produces
2Lkn+r = LknLr + 5FknFr. The result immediately follows on substituting for the integral
representations ofFkn andLkn given by (2.1) and (2.5) respectively into the given index addition
formula, and completes the proof.

Remark 2.4. As a consequence of (2.7), integral representations for the Lucas numbersLn and
the even and odd Lucas numbersL2n andL2n+1 immediately follow. These are obtained on
setting(k, r) equal to(1, 0), (2, 0), and(2, 1) respectively. They are:

Ln =
1

2n

∫ 1

−1

(
1 + (n + 1)x

√
5
)(

1 + x
√

5
)n−1

dx,
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L2n =
1

2n

∫ 1

−1

(
3 + (n + 1)x

√
5
)(

3 + x
√

5
)n−1

dx,

and

L2n+1 =
1

2n+1

∫ 1

−1

(
5n + 3 + (n + 1)x

√
5
)(

3 + x
√

5
)n−1

dx.
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