

SIMPLE INTEGRAL REPRESENTATIONS FOR THE FIBONACCI AND LUCAS NUMBERS

SEÁN M. STEWART

Received 26 August, 2021; accepted 2 August, 2022; published 26 August, 2022.

PHYSICAL SCIENCE AND ENGINEERING DIVISION, KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, THUWAL 23955-6900, SAUDI ARABIA. sean.stewart@kaust.edu.sa

ABSTRACT. Integral representations of the Fibonacci numbers F_{kn+r} and the Lucas numbers L_{kn+r} are presented. Each is established using methods that rely on nothing beyond elementary integral calculus.

Key words and phrases: Integral representation; Fibonacci number; Lucas number.

2010 Mathematics Subject Classification. Primary 11B39.

ISSN (electronic): 1449-5910

^{© 2022} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

The representation of special numbers obtained from various counting sequences using an integral is one of a number of important tools available in their analysis. Integral representations for a range of classical counting numbers are known. Perhaps the greatest variety in integral representations is to be found among the Catalan numbers [12, 2, 3, 4, 5, 11, 15, 13, 14, 10]. To a lesser extent is the number of integral representations found for the Fibonacci numbers while there is a distinct paucity of such representations for the Lucas numbers. Integral representations for the Fibonacci numbers have been given recently by Glasser and Zhou [8] and Andrica and Bagdasar [1, p. 132] while another for the even Fibonacci numbers was given two decades ago by Dilcher [6]. Andrica and Bagdasar [1, p. 133] have given the only integral representation I have managed to find in the literature for the Lucas numbers.

In this note we give new integral representations of the Fibonacci numbers F_{kn+r} and the Lucas numbers L_{kn+r} . Here $n \in \mathbb{Z}_{\geq 0} = \{0, 1, 2, ...\}$ is a non-negative integer, $k \in \mathbb{Z}_{>0} = \{1, 2, 3, ...\}$ is an arbitrary but fixed positive integer, while $r \in \mathbb{Z}_{\geq 0}$ is an arbitrary but fixed non-negative integer. In the past various integral representations for the Fibonacci numbers have usually been established using advanced techniques such as using a complex analytic approach based on a Fourier integral representation [8], using a method that relied on the (Gaussian) hypergeometric function [6], or using a method that employs the Cauchy integral formula [1]. The integral representations to be given here will be established using nothing beyond elementary integral calculus.

Before proceeding we briefly recall some definitions and results we are going to have a need for. As usual the *n*th Fibonacci number F_n is defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ with $F_0 = 0$ and $F_1 = 1$ while the *n*th Lucas number L_n is defined by the recurrence relation $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$ with $L_0 = 2$ and $L_1 = 1$. Binet's formula for the Fibonacci numbers is [9, Thm. 5.5, p. 90]

(1.1)
$$F_n = \frac{1}{\sqrt{5}} \left(\varphi^n - \frac{(-1)^n}{\varphi^n} \right),$$

while Binet's formula for the Lucas numbers is [9, Thm. 5.7, p. 93]

(1.2)
$$L_n = \varphi^n + \frac{(-1)^n}{\varphi^n}.$$

Here φ denotes the golden ratio $(1 + \sqrt{5})/2$. From (1.1) and (1.2) one can see the connection between the Fibonacci numbers, the Lucas numbers, and the golden ratio is

(1.3)
$$\varphi^n = \frac{L_n + F_n \sqrt{5}}{2}$$

An identity we need is [9, p. 117, Ex. 5.37]

(1.4)
$$L_n^2 - 5F_n^2 = 4(-1)^n.$$

Finally, for $m, r \in \mathbb{Z}_{\geq 0}$ the Fibonacci and Lucas index addition formulae are [7, 16]

and

(1.6)
$$2L_{m+r} = L_m L_r + 5F_m F_r$$

respectively.

2. INTEGRAL REPRESENTATIONS

We first give integral representations for the Fibonacci numbers F_{kn} and the Lucas numbers L_{kn} . These are then used to establish integral representations for the Fibonacci numbers F_{kn+r} and the Lucas numbers L_{kn+r} .

Theorem 2.1. For $n \in \mathbb{Z}_{\geq 0}$ and arbitrary but fixed $k \in \mathbb{Z}_{>0}$, the Fibonacci numbers F_{kn} can be represented by the integral

(2.1)
$$F_{kn} = \frac{nF_k}{2^n} \int_{-1}^1 \left(L_k + F_k x \sqrt{5} \right)^{n-1} dx.$$

Proof. Direct elementary integration yields

$$\frac{nF_k}{2^n} \int_{-1}^1 \left(L_k + F_k x \sqrt{5} \right)^{n-1} dx = \frac{1}{\sqrt{5}} \left[\left(\frac{L_k + F_k x \sqrt{5}}{2} \right)^n \right]_{-1}^1$$
$$= \frac{1}{\sqrt{5}} \left[\left(\frac{L_k + F_k \sqrt{5}}{2} \right)^n - \left(\frac{L_k - F_k \sqrt{5}}{2} \right)^n \right].$$

Noting that

(2.2)
$$\frac{1}{\varphi^m} = \frac{2}{L_m + F_m \sqrt{5}} = \frac{2(L_m - F_m \sqrt{5})}{L_m^2 - 5F_m^2} = \frac{(-1)^m}{2} \left(L_m - F_m \sqrt{5} \right),$$

where $m \in \mathbb{Z}_{\geq 0}$ and the result given in (1.4) has been used, allows one to write

$$\frac{nF_k}{2^n} \int_{-1}^1 \left(L_k + F_k x \sqrt{5} \right)^{n-1} dx = \frac{1}{\sqrt{5}} \left(\varphi^{kn} - \frac{(-1)^{kn}}{\varphi^{kn}} \right) = F_{kn},$$

where (1.3) together with the result for Binet's formula for the Fibonacci numbers given by (1.1) with n replaced with kn have been used, and completes the proof.

Remark 2.1. Setting k = 2 in (2.1) gives

(2.3)
$$F_{2n} = \frac{n}{2^n} \int_{-1}^{1} \left(3 + x\sqrt{5}\right)^{n-1} dx$$

an integral representation of the even Fibonacci numbers and corresponds to the result found by Dilcher using an approach that relied on the (Gaussian) hypergeometric function [6]. We should note Dilcher's result is presented as a trigonometric integral that is obtained by making a substitution of $x = \cos t$ in (2.3). An integral representation of the odd Fibonacci numbers can be readily found. Using the obvious identity $F_{2n+1} = F_{2n+2} - F_{2n}$, a reindexing of $n \mapsto n+1$ in (2.3), the difference between this result and (2.3) produces

(2.4)
$$F_{2n+1} = \frac{1}{2^{n+1}} \int_{-1}^{1} \left(n+3+(n+1)x\sqrt{5} \right) \left(3+x\sqrt{5} \right)^{n-1} dx.$$

Remark 2.2. Indeed, (2.1) can be seen as a thinly disguised form of Binet's formula for F_{kn} with the connection becoming obvious if we write

$$F_{kn} = \frac{n}{\sqrt{5}} \int_{\frac{1}{(-\varphi)^k}}^{\varphi^k} t^{n-1} dt$$

and substitute $t = (L_k + F_k x \sqrt{5})/2$.

Theorem 2.2. For $n \in \mathbb{Z}_{\geq 0}$ and arbitrary but fixed $k \in \mathbb{Z}_{>0}$, the Lucas numbers L_{kn} can be represented by the integral

(2.5)
$$L_{kn} = \frac{1}{2^n} \int_{-1}^{1} \left(L_k + F_k(n+1)x\sqrt{5} \right) \left(L_k + F_kx\sqrt{5} \right)^{n-1} dx.$$

Proof. Denote the integral to be found by *I*. Integrating by parts, we have

$$I = \frac{1}{nF_k\sqrt{5}} \left[\left(\frac{L_k + F_k x\sqrt{5}}{2} \right)^n \left(L_k + F_k (n+1) x\sqrt{5} \right) \right]_{-1}^1 - \frac{n+1}{n2^n} \int_{-1}^1 \left(L_k + F_k x\sqrt{5} \right)^n dx$$
$$= \frac{1}{nF_k\sqrt{5}} \left(\frac{L_k + F_k\sqrt{5}}{2} \right)^n \left(L_k + F_k (n+1)\sqrt{5} \right)$$
$$- \frac{1}{nF_k\sqrt{5}} \left(\frac{L_k - F_k\sqrt{5}}{2} \right)^n \left(L_k - F_k (n+1)\sqrt{5} \right) - \frac{2}{nF_k}F_{kn+k},$$

where in the last line the result for the integral given by (2.1) with $n \mapsto n+1$ has been used. Applying (1.3) and (2.2) before expanding, followed by the application of both Binet formulae (1.1) and (1.2) with n replaced with kn leads to

$$I = \frac{1}{nF_k} \left(L_k F_{kn} + (n+1)F_k L_{kn} - 2F_{kn+k} \right) = L_{kn}$$

Here application of the Fibonacci index addition formula given in (1.5) has been made with m replaced with kn, and completes the proof.

Theorem 2.3. For $n \in \mathbb{Z}_{\geq 0}$ and arbitrary but fixed $k \in \mathbb{Z}_{>0}$ and $r \in \mathbb{Z}_{\geq 0}$, the Fibonacci numbers F_{kn+r} can be represented by the integral

(2.6)
$$F_{kn+r} = \frac{1}{2^{n+1}} \int_{-1}^{1} \left(nF_k L_r + F_r L_k + F_k F_r (n+1)x\sqrt{5} \right) \left(L_k + F_k x\sqrt{5} \right)^{n-1} dx.$$

Proof. The Fibonacci index addition formula given by (1.5) with m replaced with kn produces $2F_{kn+r} = F_{kn}L_r + F_rL_{kn}$. The result immediately follows on substituting for the integral representations of F_{kn} and L_{kn} given by (2.1) and (2.5) respectively into the given index addition formula, and completes the proof.

Remark 2.3. Notice the result for the integral representation of the odd Fibonacci numbers given by (2.4) is recovered from (2.6) on setting (k, r) = (2, 1).

Theorem 2.4. For $n \in \mathbb{Z}_{\geq 0}$ and arbitrary but fixed $k \in \mathbb{Z}_{>0}$ and $r \in \mathbb{Z}_{\geq 0}$, the Lucas numbers L_{kn+r} can be represented by the integral

(2.7)
$$L_{kn+r} = \frac{1}{2^{n+1}} \int_{-1}^{1} \left(5nF_kF_r + L_kL_r + F_rL_r(n+1)x\sqrt{5} \right) \left(L_k + F_kx\sqrt{5} \right)^{n-1} dx.$$

Proof. The Lucas index addition formula given by (1.6) with m replaced with kn produces $2L_{kn+r} = L_{kn}L_r + 5F_{kn}F_r$. The result immediately follows on substituting for the integral representations of F_{kn} and L_{kn} given by (2.1) and (2.5) respectively into the given index addition formula, and completes the proof.

Remark 2.4. As a consequence of (2.7), integral representations for the Lucas numbers L_n and the even and odd Lucas numbers L_{2n} and L_{2n+1} immediately follow. These are obtained on setting (k, r) equal to (1, 0), (2, 0), and (2, 1) respectively. They are:

$$L_n = \frac{1}{2^n} \int_{-1}^{1} \left(1 + (n+1)x\sqrt{5} \right) \left(1 + x\sqrt{5} \right)^{n-1} dx,$$

$$L_{2n} = \frac{1}{2^n} \int_{-1}^{1} \left(3 + (n+1)x\sqrt{5} \right) \left(3 + x\sqrt{5} \right)^{n-1} dx,$$

and

$$L_{2n+1} = \frac{1}{2^{n+1}} \int_{-1}^{1} \left(5n + 3 + (n+1)x\sqrt{5} \right) \left(3 + x\sqrt{5} \right)^{n-1} \, dx$$

REFERENCES

- [1] D. ANDRICA and O. BAGDASAR, *Recurrent sequences: Key results, applications, and problems,* Springer, Cham, 2020.
- [2] T. DANA-PICARD, Parametric integral and Catalan numbers, *Internat. J. Math. Ed. Sci. Tech.*, 36 (2005), No. 4, pp. 410–414.
- [3] T. DANA-PICARD, Integral presentations of Catalan numbers, *Internat. J. Math. Ed. Sci. Tech.*, 41 (2010), No. 1, pp. 63–69.
- [4] T. DANA-PICARD, Integral presentations of Catalan numbers and Wallis formula, Internat. J. Math. Ed. Sci. Tech., 42 (2011), No. 1, pp. 122–129.
- [5] T. DANA-PICARD and D. G. ZEITOUN, Parametric improper integrals, Wallis formula and Catalan numbers, *Internat. J. Math. Ed. Sci. Tech.* **43** (2012), No. 4, pp. 515–520.
- [6] K. DILCHER, Hypergeometric functions and Fibonacci numbers, *Fibonacci Quart.*, 38 (2000), No. 4, pp. 342–363.
- [7] H. H. FERNS, Problem B-106, Fibonacci Quart. 5 (1967), No. 1, p. 107.
- [8] M. L. GLASSER and Y. ZHOU, An integral representation for the Fibonacci numbers and their generalization, *Fibonacci Quart.*, 53 (2015), No. 4, pp. 313–318.
- [9] T. KOSHY, *Fibonacci and Lucas numbers with applications*, Volume 1 (2nd edition), John Wiley & Sons, Hoboken, NJ, 2018.
- [10] P. MCCALLA and A. NKWANTA, Catalan and Motzkin integral representations, in *The Golden Anniversary Celebration of the National Association of Mathematicians*, Contemporary Mathematics, Vol. 759, American Mathematical Society, 2020, pp. 125–134.
- [11] A. NKWANTA and E. R. BARNES, Two Catalan-type Riordan arrays and their connections to the Chebyshev polynomials of the first kind, *J. Integer Seq.*, **15** (2012), No. 3, Article 12.3.3.
- [12] K. A. PENSON and J. M. SIXDENIERS, Integral representations of Catalan and related numbers, *J. Integer Seq.*, 4 (2001), No. 2, Article 01.2.5.
- [13] F. QI, Parametric integrals, the Catalan numbers, and the beta function, *Elem. Math.*, **72** (2017), No. 3, pp. 103–110.
- [14] F. QI and B.-N. GUO, Integral representations of the Catalan numbers and their applications, *Mathematics*, 5 (2017), No. 3, Article 40.
- [15] X. T. SHI, F. F. LIU, and F. QI, An integral representation of the Catalan numbers, *Glob. J. Math. Anal.*, 3 (2015), No. 3, pp. 130–133.
- [16] C. R. WALL, Fibonacci–Lucas addition formulas. Solution to Problem B-106, *Fibonacci Quart.*, 5 (1967), No. 5, pp. 466–467.

5