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ABSTRACT. Integral representations of the Fibonacci numbidéys, - and the Lucas numbers
Ly, are presented. Each is established using methods that rely on nothing beyond elementary
integral calculus.
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1. INTRODUCTION

The representation of special numbers obtained from various counting sequences using an
integral is one of a number of important tools available in their analysis. Integral representations
for a range of classical counting numbers are known. Perhaps the greatest variety in integral
representations is to be found among the Catalan numibers [12,/2] 3, 4, 5,(11,15] 13, 14, 10]. To
a lesser extent is the number of integral representations found for the Fibonacci numbers while
there is a distinct paucity of such representations for the Lucas numbers. Integral representations
for the Fibonacci numbers have been given recently by Glasser andZhou [8] and Andrica and
Bagdasar |1, p. 132] while another for the even Fibonacci numbers was given two decades ago
by Dilcher [6]. Andrica and Bagdasatr/[1, p. 133] have given the only integral representation |
have managed to find in the literature for the Lucas numbers.

In this note we give new integral representations of the Fibonacci nunifgrs and the
Lucas numberd., .. Heren € Z>, = {0,1,2,...} is a non-negative integek, € Z-., =
{1,2,3,...} is an arbitrary but fixed positive integer, whitec Z, is an arbitrary but fixed
non-negative integer. In the past various integral representations for the Fibonacci numbers have
usually been established using advanced techniques such as using a complex analytic approach
based on a Fourier integral representation [8], using a method that relied on the (Gaussian) hy-
pergeometric functior [6], or using a method that employs the Cauchy integral formula [1]. The
integral representations to be given here will be established using nothing beyond elementary
integral calculus.

Before proceeding we briefly recall some definitions and results we are going to have a need
for. As usual thenth Fibonacci numbefF), is defined by the recurrence relatiéh = F,,_; +
F,_o forn > 2 with F;, = 0 andF; = 1 while thenth Lucas number., is defined by the
recurrence relatiot,, = L,,_; + L,,_o forn > 2 with L, = 2 andL; = 1. Binet’s formula for
the Fibonacci numbers isi[9, Thm. 5.5, p. 90]

1 (=1)"
(1.2) F,=— (gp” — ) ,
v @"
while Binet's formula for the Lucas numbers|is [9, Thm. 5.7, p. 93]
—1)"
1.2) L,=¢" + ( n> :
¥

Here denotes the golden ratid + /5)/2. From [1.1) and[(1]2) one can see the connection
between the Fibonacci numbers, the Lucas numbers, and the golden ratio is

w Lo+ FV5
Pl = ————.

1.3

(1.3) 5
An identity we need i9[9, p. 117, Ex. 5.37]

(1.4) L2 —5F% = 4(-1)™.

Finally, form, r € Z~, the Fibonacci and Lucas index addition formulae are [7, 16]

(1.5) 2F 1 = F. Ly, + L. F,,
and

(1.6) 2Ly = Ly Ly + 5F,, F,,
respectively.
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2. INTEGRAL REPRESENTATIONS

We first give integral representations for the Fibonacci numbgrsand the Lucas numbers
Ly,. These are then used to establish integral representations for the Fibonacci nBmbers
and the Lucas numbers.,, .

Theorem 2.1. For n € Z>, and arbitrary but fixedk € Z., the Fibonacci numbers;,, can
be represented by the integral

F; 1 n—1
(2.1) Fip = % (Lk + Fkx\/5> dz.
—1

Proof. Direct elementary integration yields

nF, ! n-1 1 [0+ e\
L —1

on 2
1 [+ BB\ (- RB)
V5 2 2 ‘
Noting that
1 2 2Ly — FuV/5) (=)™
2.2 — = = = Lnm—F,

wherem € Z3, and the result given in (1.4) has been used, allows one to write

nky /1 ( nl 1 ( k (‘Dkn)
L+Fx\/5> de = — [ o — — By,
277, 1 k k \/g 80 ngn k

where [1.8) together with the result for Binet's formula for the Fibonacci numbers given by
(1.7) withn replaced withtn have been used, and completes the prgof.

Remark 2.1. Settingk = 2 in (2.1) gives

n 1 n—1

(2.3) Fon = 5 (3 n x\/E) dz,
-1

an integral representation of the even Fibonacci numbers and corresponds to the result found
by Dilcher using an approach that relied on the (Gaussian) hypergeometric function [6]. We
should note Dilcher’s result is presented as a trigonometric integral that is obtained by making a
substitution ofr = cost in (2.3). An integral representation of the odd Fibonacci numbers can
be readily found. Using the obvious identi&y,, ., = F5,.» — F5,, a reindexing of — n + 1
in (2.3), the difference between this result gnd](2.3) produces

(2.4) Fop1 = % /1 (n +3+(n+ 1)1\/3) (3 + x\/3>n1 dx.

Remark 2.2. Indeed, [(2.]1) can be seen as a thinly disguised form of Binet’s formul&;for
with the connection becoming obvious if we write

n o [
B = — "t
k \/g/ L ) )
(=)

and substitute = (L, + Fr.zv/5)/2.
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Theorem 2.2. For n € Z-, and arbitrary but fixedt € Z-, the Lucas numberg,,, can be
represented by the integral
1

(2.5) Lo (i + Fln + 1av5) (L + Fev) R

:2_77, )

Proof. Denote the integral to be found By Integrating by parts, we have

n 1
1 Ly + F.zv/5 n+1 (! n
I = L, + F 1 — L, + F d
nEFp/5 ( 2 > < R Mﬁ)]_ n2" /1< b kx\/5> !
1 L+ F/5\
- Ly + Fe(n+ 1)V5
an\/S( 2 ) (k k(n+1) )
1 Li— F/5\ 9
_ L, — F DV5) — ——Fipir,
an\/g( 2 ) ( ’ Mo+ )\/_> nkj, ek

where in the last line the result for the integral given [py](2.1) witk- » + 1 has been used.
Applying (1.3) and[(2.2) before expanding, followed by the application of both Binet formulae
(1.7) and[(1.R) wit replaced withkn leads to

1
I = — (LpFyn + (n + 1) Fy Ly, — 2F44%) = Lien.
an
Here application of the Fibonacci index addition formula give(l.5) has been madewwith

replaced withkn, and completes the prodd.

Theorem 2.3. For n € Z>, and arbitrary but fixedk € Z-., andr € Zs,, the Fibonacci
numbersFy, .. can be represented by the integral

1
2n+1

1 n—1
(2.6)  Finsr = / (anLT Y E.Ly+ FF(n+ 1)3:\/5) (Lk n Fkx\/S) dz.
-1
Proof. The Fibonacci index addition formula given ty (1.5) withreplaced withcn produces
2Fenir = FinL, + F,.L,. The result immediately follows on substituting for the integral
representations dfy,, andLy,, given by [2.1) and (2]5) respectively into the given index addition
formula, and completes the proaf.

Remark 2.3. Notice the result for the integral representation of the odd Fibonacci numbers
given by [2.4) is recovered fror (2.6) on settifigr) = (2,1).

Theorem 2.4.For n € Z>, and arbitrary but fixedk € Z., andr € Zx,, the Lucas numbers
Ly, can be represented by the integral

1 1 n—1

2.7)  Liner = 5oy / <5anFT, + LyL, + F,L,(n + 1)x\/§> (Lk + Fkx\/5> dz.
—1

Proof. The Lucas index addition formula given by ([L.6) witlh replaced withkn produces

2Lin+r = Lpn L, + 5F, F.. The result immediately follows on substituting for the integral

representations dfy,, andLy,, given by [2.1) and (2]5) respectively into the given index addition

formula, and completes the proaf.

Remark 2.4. As a consequence ¢f (2.7), integral representations for the Lucas numjensl
the even and odd Lucas numbdrg, and L,, ,; immediately follow. These are obtained on
setting(k, r) equal to(1,0), (2,0), and(2, 1) respectively. They are:

L=y [ (14 e 02vB) (140v8)

on |,
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Lo, = 2% _11 (3 + (n+ 1)x\/5> <3 + a:\/g>n_1 dz,
and
Lopi1 = ﬁ /11 (5n +3+(n+ 1):16\/5) (3 + :L‘\/5>n_1 dx.
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