|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
The Iterated Variational Method for the Eigenelements of a Class of Two-Point Boundary Value Problems
Author(s):
Muhammed I. Syam and Qasem M. Al-Mdallal
Department of Mathematical Sciences, College of Science, UAE University,
P. O. Box 17551, Al-Ain,
United Arab Emirates
Q.Almdallal@uaeu.ac.ae
M.Syam@uaeu.ac.ae
Abstract:
The iterated variational method is considered in the approximation
of eigenvalues and eigenfunctions for a class of two point boundary
value problems. The implementation of this method is easy and
competes well with other methods. Numerical examples are presented
to show the efficiency of the method proposed. Comparison with the
work of others is also illustrated.
Paper's Title:
An Easy and Efficient Way for Solving A class of Singular Two Point Boundary Value Problems
Author(s):
Muhammed I. Syam, Muhammed N. Anwar and Basem S. Attili
Mathematical Sciences Department
United Arab Emirates University, P. O. Box 17551
Al-Ain, United Arab Emirates
b.attili@uaeu.ac.ae
Abstract:
We will consider an efficient and easy way for solving a certain
class of singular two point boundary value problems. We will
employ the least squares method which proved to be efficient for
this type of problems. Enough examples that were considered by
others will be solved with comparison with the results presented
there.
Paper's Title:
Solving Two Point Boundary Value Problems by Modified Sumudu Transform Homotopy Perturbation Method
Author(s):
Asem AL Nemrat and Zarita Zainuddin
School of Mathematical Sciences,
Universiti Sains Malaysia,
11800 Penang,
Malaysia.
E-mail: alnemrata@yahoo.com
zarita@usm.my
Abstract:
This paper considers a combined form of the Sumudu transform with the modified homotopy perturbation method (MHPM) to find approximate and analytical solutions for nonlinear two point boundary value problems. This method is called the modified Sumudu transform homotopy perturbation method (MSTHPM). The suggested technique avoids the round-off errors and finds the solution without any restrictive assumptions or discretization. We will introduce an appropriate initial approximation and furthermore, the residual error will be canceled in some points of the interval (RECP). Only a first order approximation of MSTHPM will be required, as compared to STHPM, which needs more iterations for the same cases of study. After comparing figures between approximate, MSTHPM, STHPM and numerical solutions, it is found through the solutions we have obtained that they are highly accurate, indicating that the MSTHPM is very effective, simple and can be used to solve other types of nonlinear boundary value problems (BVPs).
Search and serve lasted 1 second(s).