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1. I NTRODUCTION

Singular two point boundary value problems for ordinary differential equations arise very
frequently in several areas of science and engineering. For example; the analysis of heat con-
duction through a solid with heat generation leads to a boundary value problem that involve the
solution of an ordinary differential equation of the form

d

dx

(
p(x)

dT

dx

)
+ q(x)T = f(x, T )

where the dependent variable represents the temperature and the right hand function represents
the heat generation. Furthermore, the well-known Thomas-Fermi model in atomic physics that
describes the charge concentrationy(x) of electrons in an ion is governed by a special type of
singular ordinary differential equation of the form

√
xy′′(x) =

√
y(x).

Very often singularities are encountered at one or more points in the interval over which the
problem is defined. We mention here two examples to illustrate our point.

(1) When separation of variables is attempted on the heat equation in a solid sphere or the
electrostatic potential in the sphere, the singular equation

− 1

sin (ϕ)

[
Φ

′
(ϕ) sin (ϕ)

]′
+ λΦ (ϕ) = 0, ϕ ∈ [0, π]

appears. The source of the singularity here is the vanishing of the functionp at the
endpoints.

(2) The equation
−

((
1− x2

)
u′

)′
= f(x), x ∈ [−1, 1]

represents the steady state temperature distribution in a bar extending from -1 to 1 if the
thermal conductivity is(1− x2) . The same type of singularity occurs here also.

Other areas of engineering where such singular problems occur is the analysis of behavior
of magnetoelectroelastic material, which has the ability of converting the magnetic, electric,
and mechanical; energies from one to another. The mathematical modeling of characteristics of
such material Chandrasekhar[4] is a very active area of research and investigations. Therefore,
the solution of such model represents a challenge, which involves solving a particular singular
boundary value problem of a form similar to the above equations. Another area of application
is the modeling and analysis of the dynamics of compressible perfect fluids such as plasmas
and dilute gases Davis[9]. Many other examples and applications involving singular boundary
value problems are cited in the work of Weinitschke[32] and Schneider[28].

The numerical treatment of such singular boundary value problems has always been far from
trivial, because the existence of the singularity in the underlying equation. Several authors have
been extensively involved in the solution of such class of problems and numerous innovative
methods and approach have enriched the scientific literature; each with its particular merits and
advantages.

The starting of some serious work on the numerical methods for the previously mentioned
problem was in 1965, when Parter[24] and in his study of numerical methods for generalized ax-
ially symmetric potentials in a rectangle was led to a singular second order BVP. He considered
finite difference methods to approximate the solution of such singular problem. Others that con-
sidered finite differences are Jamet[17], Doedel and Reddien[10], Chawla, McKee and Shaw[5]
and Chawla, Subramanian and Sathi[6], Cohen and Jones[8] and Gustafsson[16]. Different
approaches and order of convergence were achieved depending on the type of the singularity
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in addition to stability and convergence analysis. Rayleigh-Ritz-Galerkin method was consid-
ered by Ciarlet, Natterer and Varga[7] and Jespersen[18] and Eriksson and Thome’e[13]. Other
methods like collocation was considered by Reddien[26]. Invariant embedding was considered
by Attili[2], Scott[29], Elder[11], Kadalbajoo, and Raman[19] and Nelson[23]. Recently, gen-
eral existence and uniqueness results for solutions of the singular problem were given in Fink,
Gatica, Hrenandez and Waltman[14] and Baxley[3] while for the eigenvalue problem was con-
sidered by Nassif[22]. Initial value methods through shooting was employed by Attili, Elgindi
and Elgebeily[1] produced a convergence rate of at least 2 when Runge-Kutta of order 4 is used.
This is due to the singularity. A more accurate iterative shooting method is given by Elgebeily
and Attili[12]. Cubic splines with the series solution as explained in the invariant embedding
case above was used successfully by Kadalbajoo and Aggarwal[20].

We will employ a traditional easy to use least squares method which is one of the weighted
residual methods. It proved to be efficient in computing such singularities. What makes it
attractive is its easiness and accurate results it yields. It compares and competes very well with
other methods mentioned above in terms of accuracy and amount of work. We will present the
method in the nest section. Enough examples will be solved in the final section that illustrates
the point.

2. L EAST SQUARES METHOD

We will present here an overview of weighted residual methods since the least squares method
is one special case, see Finlayson[15] and Lapidus and Pinder[21]. It is well known that these
are some approximation methods to solve arbitrary linear and nonlinear differential equations.
Both, ordinary and partial differential equations, are considered. We will start with the following
one-dimensional differential equation

(2.1) Lu + f = 0, x ∈ [a, b],

whereu(x) is the unknown function andf(x) is a given function andL denotes a linear differ-
ential operator which specifies the actual form of the differential equation (2.1). For example
L = d

dx
or L = d2

dx2 . The boundary conditions can be given in simple form by

(2.2) u(a) = ua, u(b) = ub.

Multiplying (2.1) by an arbitrary weight functionv(x) and integrating over the interval[a, b]
one obtains

(2.3)

b∫
a

v (Lu + f) dx = 0

It is clear that (2.1) and (2.3) are equivalent, becausev(x) is an arbitrary function. This means
we seek a numerical solution to (2.3) subject to (2.2) in the form

(2.4) û = α1ϕ1 + α2ϕ2 + .... + αnϕn

Hereϕ1, ϕ2, ... , ϕn are basis functions ofx that form a linearly independent and complete set
andα1, α2, ... , αn are unknown coefficients that need to be determined. In vector form (2.4)
becomes

(2.5) û = Ψa
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where

a =


α1

α2

.

.
αn

 ; Ψ = (ϕ1, ϕ2, ... , ϕn)

Substitutingû(x) given by (2.4) in place ofu(x) in (2.3), we are supposed to obtain

(2.6)

b∫
a

v (Lû + f) dx = 0,

but in fact replacingu(x) by its approximation̂u(x) in (2.1), it will not be satisfied exactly; that
is,

(2.7) Lu + f = e,

wheree(x) is a measure for the error called the residual. This leads to

(2.8)

b∫
a

v(x)e(x)dx = 0,

Obviously, the residual,e(x) depends on the unknown parameters given by vectora; that is,
depends onα1, α2, ... , αn. Therefore the coefficientsα1, α2, ... , αn must be determined so
that (2.8) is satisfied. Generally

v(x) = b1v1(x) + b2v2(x) + ... + bnvn(x)

wherev1(x), v2(x), ... , vn(x) are known functions ofx known as basis andb1, b2, ... , bn are
certain parameters. In vector format it is written as

v(x) = bV

where V = (v1(x), v2(x), ... , vn(x)) andb = (b1, b2, ... , bn) . Substituting in (2.8) leads to

(2.9) bT

b∫
a

V T (x)e(x)dx = 0.

SincebT is arbitrary, this means

(2.10)

b∫
a

V T (x)e(x)dx = 0,

or

(2.11)

b∫
a

v1(x)e(x)dx = 0,

b∫
a

v2(x)e(x)dx = 0, ... ,

b∫
a

vn(x)e(x)dx = 0.

Now, we haven equations inn unknowns; that is, the coefficientsα1, α2, ... , αn. Using (2.5)
and (2.7) yields

e(x) = L (Ψa) + f = L (Ψ) .a + f
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and the condition (2.10) can be rewritten as b∫
a

V T (x)L(Ψ)dx

 .a = −
b∫
a

V T (x)f(x)dx.

In matrix form

(2.12) Ka = h,

where

K =

b∫
a

V T (x)L(Ψ)dx, h = −
b∫
a

V T (x)f(x)dx.

A linear system ofn equations inn coefficientsα1, α2, ... , αn to be determined.
The choice ofvi(x) and henceV (x) determines the method. In the least square method,

which is under consideration here, the functionsvi(x) are defined as

vi(x) =
∂e

∂αi

; i = 1, ... , n.

Accordingly (2.11) in this case becomes
b∫
a

∂e

∂αi

e(x)dx. = 0; i = 1, ... , n.

This is due to the fact that to determine the parametersα1, α2, ... , αn, it will involve minimiz-
ing

E(α1, α2, ... , αn) =

b∫
a

e2(x)dx.

over the interval[a, b]. A sufficient condition is

∂E(α1, α2, ... , αn)

∂αi

= 2

b∫
a

e(x)
∂e

∂αi

dx. = 0; i = 1, ... , n.

In explicit form the linear system (2.11) has the form

b∫
a

L(ϕ1)L(ϕ1)dx. . . .

b∫
a

L(ϕ1)L(ϕn)dx

b∫
a

L(ϕ2)L(ϕ1)dx . . .

b∫
a

L(ϕ2)L(ϕn)dx

. .

. .

. .
b∫
a

L(ϕn)L(ϕ1)dx

b∫
a

L(ϕn)L(ϕn)dx




α1

α2

αn

 = −



b∫
a

L(ϕ1)fdx.

b∫
a

L(ϕ2)fdx.

b∫
a

L(ϕn)fdx.



,

with K symmetric in this case, for more see see Finlayson[15]. Note that ifϕ1, ϕ2, ... , ϕn,
the basis functions are mutually orthogonal (if the sequence is not orthogonal we will accept
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that we can always reduce it to an orthogonal one) and complete set, the matrixK in the system
above will reduce to a diagonal system making the calculations easier.

3. NUMERICAL EXPERIMENTS AND RESULTS

To demonstrate the simplicity and accuracy of the proposed method we will consider several
examples cited by several authors in the literature. Consider the following examples.

Example 3.1. We consider the singular initial value problem governed by a Lane-Emden type
equation given by:

d2y

dx2
+

2

x

dy

dx
− 2(x2 + 3)y = 0, 0 < x < 1

y(0) = 1, y′(0) = 0

whose exact solution isy(x) = ex2
. Such equation appears in many applications among them

the governing mathematical models of various problems in physics, astrophysics, and thermal
behavior of gas clouds [5], [9], and [27]. We have used two polynomial representations namely:

PN(x) =
N∑

i=0

aix
i, N = 5, 9.

Implementing the proposed method, we arrive at

P5(x) = 1 + 0.942595x2 + 0.516105x3 − 0.700402x4 + 0.960801x5

and

P9(x) = 1 + 0.999932x2 + 0.00237407x3 + 0.476123x4 + 0.110602x5

−0.109141x6 + 0.3886159x7 − 0.258623x8 + 0.108399x9

Table 3.1 gives the absolute errors in both polynomials at selected values ofx while Figure 3
represents the graphs of the exact solution withP5(x).

Figure 1: The graphs of y(x) and P5(x)
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Least Squares Technique
xi |y(xi)− P5(xi)| |y(xi)− P9(xi)|
0 0.0 0.0
0.02 3.28(−6) 2.11(−10)
0.04 1.20(−6) 1.78(−10)
0.06 1.11(−6) 3.21(−10)
0.08 1.24(−6) 3.00(−10)
0.1 1.68(−6) 1.69(−10)
0.2 2.08(−6) 5.73(−10)

Least Squares Technique
0.3 1.26(−6) 3.84(−10)
0.4 2.24(−6) 3.66(−10)
0.5 2.38(−6) 4.49(−10)
0.6 1.42(−6) 8.15(−10)
0.7 1.05(−6) 3.95(−10)
0.8 1.02(−6) 2.12(−10)
0.9 3.55(−6) 5.49(−10)
1.0 8.17(−6) 5.92(−10)

Table(3.1)

Results reveal the efficiency and computational accuracy of the proposed method. The above
problem was considered by Wazwaz[30, 31]. The solutions he obtained were based on series
solution using Adomian decomposition method. The solutions obtained have similar form to
Taylor series expansion aboutx = 0. This means there will be some convergence problems
when the point is far from zero. For example, the absolute errors atx = 1 using the polynomials
of degree five and nine generated by the Adomian Decomposition method are0.218282 and
0.175226, respectively.

Example 3.2. We consider the singular initial value problem governed by the inhomogenous
Lane-Emden type equation namely:

d2y

dx2
+

2

x

dy

dx
+ y = 6 + 12x + x2 + x3, 0 < x < 1

y(0) = 0, y′(0) = 0

whose exact solution isy(x) = x2 + x3 . Again this problem was studied by Wazwaz [31]
where its solution was obtained using Adomian decomposition method leading to a power series
solution that converges to the exact solution upon adopting the noise terms phenomenon. We
implemented the least squares method using the fourth order polynomial expression of the form

P4(x) = a2x
2 + a3x

3 + a4x
4

which resulted in obtaining the exact solution

P4(x) = x2 + x3

Note that we solve only a system of three equations in three unknowns.

Example 3.3.Consider the two point boundary value problem governed by the Bessel equation
of the form

d2y

dx2
+

1

x

dy

dx
+ y = 0 , 0 < x < 1

y′(0) = 0, y(1) = 1

whose exact solution isy(x) = J0(x)
J0(1)

with J0(x) is the Bessel function of first kind of order zero.
This example was studied in [25] using a cubic spline approach and subtracting the singularity
by resorting to a power series solution in a neighborhood of the singular point. The cubic
spline technique will be costly to apply compared to the least squares approach to yield the two
polynomial representations
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PN(x) =
N∑

i=0

aix
i, N = 4, 7.

With

P4(x) = 1.306839− 0.327112x2 + 0.001956x3 + 0.018317x4

and

P7(x) = 1.306851− 0.326713x2 + 0.0000027237616x3 − 0.020404x4

+0.0000389x5 − 0.0.00061807x6 + 0.0000334x7.

Table 3.2 gives the resulting values of absolute errors attained for both cases above at specific
values ofx . HereECS(x) means the absolute error using the cubic spline technique [25] with
step sizeh = 1

40
. Moreover, Figure 3 represents the graphs of the exact solution withP4(x).

Figure 2: The graphs of the exact solution with P4(x).

xi |y(xi)− P4(xi)| |y(xi)− P7(xi)| ECS(x)
0 1.32(−6) 3.68(−14) 1.16(−4)
0.025 1.21(−6) 2.80(−14) 1.16(−4)
0.05 1.12(−6) 6.14(−14) 1.16(−4)
0.075 1.11(−6) 2.34(−14) 1.16(−4)
0.1 1.54(−6) 3.02(−14) 1.16(−4)
0.2 1.68(−6) 7.62(−14) 1.15(−4)
0.3 1.29(−5) 7.66(−14) 1.16(−4)
0.4 3.32(−5) 4.63(−14) 1.13(−4)
0.5 9.03(−6) 1.13(−14) 1.10(−4)
0.6 1.96(−5) 3.17(−14) 1.07(−4)
0.7 2.37(−6) 7.66(−14) 1.02(−4)
0.8 1.91(−5) 5.12(−14) 9.60(−5)
0.9 7.95(−6) 3.72(−15) 8.20(−5)
1 0.0 1.21(−16) 7.10(−5)

Table(3.2)

Results show that the proposed method gives considerable small errors in addition to its straight
forward implementation

Example 3.4. We consider the nonlinear homogeneous singular two-point boundary value
problem governed by:
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d2y

dx2
+

2

x

dy

dx
+ xy5 = 0 , 0 < x < 1

y(0) = 1, y(1) =

√
3

2

whose exact solution isy(x) =
√

3√
3+x2 . Implementing the proposed method using the fourth

order polynomial expression of the form:

P4(x) =

√
3

2
+ (x− 1)

3∑
i=0

aix
i

We arrive at:

P4(x) = 1 + 0.0047629x− 0.19389x2 + 0.0541207x3 + 0.001040x4.

Table 3.3 gives the absolute errors attained at specific values ofx .

xi |y(xi)− P4(xi)|
0 0.0
0.1 1.40(−5)
0.2 5.50(−5)
0.3 9.90(−5)
0.4 3.70(−5)
0.5 4.80(−5)

xi |y(xi)− P4(xi)|
0.6 4.00(−5)
0.7 2.20(−5)
0.8 3.10(−5)
0.9 6.00(−6)
1 2.11(−14)

Table(3.3)

The same problem was considered by Attili, Elgindi and Elgebeily[1], the errors they obtained
atx = 1.0 using Runge-Kutta 4th order method were2.298807−3, 3.531472−4, 8.470276−5,
2.172234− 5, 5.610755− 6 and1.391789− 6 at 1

2N ; N = 2, 3, ... , 7 respectively. Results we
obtained here for such nonlinear problem confirm the efficiency of the proposed method and
compares well with the results of others.

Example 3.5.Consider the singular two-point boundary value problem with oscillatory coeffi-
cients; namely:

sin(
πx

2
)
d2y

dx2
+

π

2
cos(

πx

2
)
dy

dx
+

π2

2
sin(

πx

2
)y = 0 ,0 < x < 1

y′(0) = 0, y(1) = 0

whose exact solution isy(x) = cos(πx
2

). We implemented the proposed method using the fifth
and ninth order polynomial expressions of the form:

PN(x) = (x− 1)
N∑

i=0

aix
i, N = 4, 8

Implementing the proposed method; we arrive at:

P4(x) = (x− 1)(−1− 0.998237x + 0.221297x2

+0.268343x3 − 0.062113x4)

and
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P9(x) = (x− 1)(−1− 0.999999x + 0.2336999x2 + 0.233707x3 − 0.020001x4

−0.019876x5 + 0.0007334x6 + 0.00106060x7 + 0.000119x8)

Table 3.4 gives the absolute errors at specific values ofx and Figure 3 represents the graphs of
the exact solution againstP4(x).

Figure 3: The graphs of the exact solution with P4(x).

xi |y(xi)− P 4(xi)| |y(xi)− P 8(xi)|
0 0.0 0.0
0.025 2.20(−7) 3.81(−14)
0.05 1.70(−7) 1.19(−14)
0.075 5.40(−7) 4.06(−14)
0.1 7.40(−7) 2.62(−14)
0.2 5.70(−7) 3.29(−14)
0.3 3.70(−7) 3.26(−14)

xi |y(xi)− P 4(xi)| |y(xi)− P 8(xi)|
0.4 3.40(−7) 2.12(−14)
0.5 4.00(−7) 2.39(−14)
0.6 4.00(−7) 2.34(−14)
0.7 2.90(−7) 1.22(−14)
0.8 1.50(−7) 9.94(−15)
0.9 5.21(−8) 6.04(−15)
1 0.0 2.01(−16)

Table(3.4)

The same example was considered by Elgebeily and Attili[12] using iterative shooting and
the errors given their usingh = 1

216 were1.901388E − 5 and 1.085963E − 10 atx = 0.5 and
x = 1.0 respectively. Our results compare very well with these results.

4. CONCLUSIONS

In this paper an approximate method based on polynomial presentation of the solution of a
class of singular second order two-point boundary, and initial value problems is presented. The
method has been demonstrated to be characterized by its simplicity, efficiency, and accuracy.
It has been implemented to obtain the solutions of a number of problems. The problems con-
sidered are selected due to their importance in many applications in Engineering and Physics.
Furthermore, for the sake of comparison the above problems are chosen because their solutions
are either known in analytical closed form, or are numerically obtained by other authors using
different approximate approaches.
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Numerical results obtained were accurate. The amount of work compares well with other
proposed methods. The proposed method has been tested for solving problems involving singu-
lar linear, nonlinear, homogeneous, and inhomogenous equations leading to results of excellent
agreements with exact solutions and achieving smaller absolute errors than other methods avail-
able in the literature.
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