


Paper's Title:
Asymptotic Inequalities for the Maximum Modulus of the Derivative of a Polynomial
Author(s):
Clément Frappier
Département de Mathématiques et de Génie industriel École Polytechnique de
Montréal,
C.P.~6079, succ. Centreville Montréal (Québec),
H3C 3A7, CANADA
Abstract:
Let be an algebraic polynomial of degree ≤n, and let ∥p∥= max {p(z):z = 1}. We study the asymptotic behavior of the best possible constant φn,k (R), for k = 0 and k=1, in the inequality ∥p'(Rz)∥ + φn,k (R) a_{k} ≤ nR^{n}^{1} ∥p∥, R → ∞.
Paper's Title:
An L^{p} Inequality for `SelfReciprocal' Polynomials. II
Author(s):
M. A. Qazi
Department of Mathematics,
Tuskegee University,
Tuskegee, Alabama 36088
U.S.A.
Abstract:
The main result of this paper is a sharp integral mean inequality for the derivative of a `selfreciprocal' polynomial.
Paper's Title:
Some Inequalities Concerning Derivative and Maximum Modulus of Polynomials
Author(s):
N. K. Govil, A. Liman and W. M. Shah
Department of Mathematics & Statistics,
Auburn University, Auburn,
Alabama 368495310,
U.S.A
Department of Mathematics,
National Institute of Technology,
Srinagar, Kashmir,
India  190006
Department of Mathematics,
Kashmir University,
Srinagar, Kashmir,
India  190006
govilnk@auburn.edu
abliman22@yahoo.com
wmshah@rediffmail.com
Abstract:
In this paper, we prove some compact generalizations of some wellknown Bernstein type inequalities concerning the maximum modulus of a polynomial and its derivative in terms of maximum modulus of a polynomial on the unit circle. Besides, an inequality for selfinversive polynomials has also been obtained, which in particular gives some known inequalities for this class of polynomials. All the inequalities obtained are sharp.
Search and serve lasted 1 second(s).