


Paper's Title:
Weakly Compact Composition Operators on Real Lipschitz Spaces of Complexvalued Functions on Compact Metric Spaces with Lipschitz Involutions
Author(s):
D. Alimohammadi and H. Alihoseini
Department of Mathematics,
Faculty of Science,
Arak University
P. O. Box,3815688349,
Arak,
Iran.
Email: dalimohammadi@araku.ac.ir
Email:
hr_alihoseini@yahoo.com
URL: http://www.araku.ac.ir
Abstract:
We first show that a bounded linear operator T on a real Banach space E is weakly compact if and only if the complex linear operator T on the complex Banach space E_{C} is weakly compact, where E_{C} is a suitable complexification of E and iT' is the complex linear operator on E_{C} associated with T. Next we show that every weakly compact composition operator on real Lipschitz spaces of complexvalued functions on compact metric spaces with Lipschitz involutions is compact.
Paper's Title:
Certain Inequalities for P_Valent Meromorphic Functions with Alternating Coefficients Based on Integral Operator
Author(s):
A. Ebadian, S. Shams and Sh. Najafzadeh
Department of Mathematics, Faculty of Science
Urmia University, Urmia,
Iran
a.ebadian@mail.urmia.ac.ir
sa40shams@yahoo.com
Department of Mathematics, Faculty of Science
Maragheh University, Maragheh,
Iran
Shnajafzadeh@yahoo.com
Abstract:
In this paper we introduce the class of functions regular and multivalent in the and satisfying
where
is
a linear operator.
Coefficient inequalities, distortion bounds, weighted mean and
arithmetic mean of functions for this class have been obtained.
Paper's Title:
Coefficient Bounds for Sakaguchi Kind of Functions Associated with Sine Function
Author(s):
Serap Bulut, H. Priya and B. Srutha Keerth
Kocaeli University,
Faculty of Aviation and Space Sciences,
Arslanbey Campus, 41285 KartepeKocaeli,
Turkey.
Email: serap.bulut@kocaeli.edu.tr
Department of Mathematics,
School of Advanced Sciences,
VIT Chennai Campus, Chennai  600 048,
India.
Email: priyaharikrishnan18@gmail.com,
priya.h2020@vitstudent.ac.in
Department of Mathematics,
School of Advanced Sciences,
VIT Chennai Campus, Chennai  600 048,
India.
Email: keerthivitmaths@gmail.com,
sruthakeerthi.b@vit.ac.in
Abstract:
In this paper, we introduce a new general subclass of analytic functions with respect to symmetric points in the domain of sine function. We obtain sharp coefficient bounds and upper bounds for the FeketeSzegö functional. Also we get sharp bounds for the logarithmic coefficients of functions belonging to this new class.
Search and serve lasted 0 second(s).