|
||||||||||||
|
if(isset($title)){?> }?> if(isset($author)){?> }?> |
||||||||||||
Paper's Title:
A Note on Schur's Lemma in Banach Function Spaces
Author(s):
R. E. Castillo, H. Rafeiro and E. M. Rojas
Universidad Nacional de Colombia,
Departamento de Matematicas, Bogota,
Colombia.
E-mail: recastillo@unal.edu.co
United Arab Emirates University,
Department of Mathematical Sciences, Al Ain,
United Arab Emirates.
E-mail: rafeiro@uaeu.ac.ae
Universidad Nacional de Colombia,
Departamento de Matematicas, Bogota,
Colombia.
E-mail: emrojass@unal.edu.co
Abstract:
In this small note, in a self contained presentation, we show the validity of Schur's type lemma in the framework of Banach function spaces.
Paper's Title:
Bilinear Regular Operators on Quasi-Normed Functional Spaces
Author(s):
D. L. Fernandez and E. B. Silva
Universidade Estadual de Campinas -
Unicamp
Instituto de Matematica
Campinas - SP
Brazil.
E-mail: dicesar@ime.unicamp.br
Universidade Estadual de Maringa--UEM
Departamento de Matematica
Av.~Colombo 5790
Maringa - PR
Brazil.
E-mail: ebsilva@uem.br
Abstract:
Positive and regular bilinear operators on quasi-normed functional spaces are introduced and theorems characterizing compactness of these operators are proved. Relations between bilinear operators and their adjoints in normed functional spaces are also studied.
Paper's Title:
On the Boundedness of the Discrete Hilbert Transform: An Elementary Proof
Author(s):
R. E. Castillo and H. C. Chaparro
Department of Mathematics,
Universidad Nacional de Colombia,
Bogota,
Colombia..
E-mail: recastillo@unal.edu.co
Program of Mathematics,
Universidad de Cartagena,
Cartagena de Indias,
Colombia.
E-mail:
hchaparrog@unicartagena.edu.co
Abstract:
In this short note, we present an elementary proof of the boundedness of the discrete Hilbert transform on lp(Z)$ spaces for 1 < p < ∞. Our approach relies solely on Hölder's inequality, avoiding more sophisticated tools from harmonic analysis. This offers a simplified and accessible pathway to understanding a classical result in operator theory.
Search and serve lasted 0 second(s).