The Australian Journal of Mathematical Analysis and Applications


Home News Editors Volumes RGMIA Subscriptions Authors Contact

ISSN 1449-5910  

 

You searched for pandey
Total of 8 results found in site

3: Paper Source PDF document

Paper's Title:

Differential Equations for Indicatrices, Spacelike and Timelike Curves

Author(s):

Sameer, Pradeep Kumar Pandey

Department of Mathematics,
Jaypee University of Information Technology,
Solan, Himachal Pradesh,
India.
E-mail: sksameer08@gmail.com, pandeypkdelhi@gmail.com 

Abstract:

Motivated by the recent work of Deshmukh et al. [20], in this paper we show that Tangent, Binormal, and Principal Normal indicatrices do not form non-trivial differential equations. Finally, we obtain the 4th-order differential equations for spacelike and timelike curves.



3: Paper Source PDF document

Paper's Title:

Corrigendum for Differential Equations for Indicatrices, Spacelike and Timelike Curves

Author(s):

Sameer, Pradeep Kumar Pandey

Department of Mathematics,
Jaypee University of Information Technology,
Solan, Himachal Pradesh,
India.
E-mail: sksameer08@gmail.com, pandeypkdelhi@gmail.com 

ABSTRACT NOT FOUND. WEBSITE ERROR

Abstract:



1: Paper Source PDF document

Paper's Title:

Higher Order Accurate Compact Schemes for Time Dependent Linear and Nonlinear Convection-Diffusion Equations

Author(s):

S. Thomas, Gopika P.B. and S. K. Nadupuri

Department of Mathematics
National Institute of Technology Calicut
Kerala
673601
India.
E-mail: sobinputhiyaveettil@gmail.com pbgopika@gmail.com nsk@nitc.ac.in
 

Abstract:

The primary objective of this work is to study higher order compact finite difference schemes for finding the numerical solution of convection-diffusion equations which are widely used in engineering applications. The first part of this work is concerned with a higher order exponential scheme for solving unsteady one dimensional linear convection-diffusion equation. The scheme is set up with a fourth order compact exponential discretization for space and cubic $C^1$-spline collocation method for time. The scheme achieves fourth order accuracy in both temporal and spatial variables and is proved to be unconditionally stable. The second part explores the utility of a sixth order compact finite difference scheme in space and Huta's improved sixth order Runge-Kutta scheme in time combined to find the numerical solution of one dimensional nonlinear convection-diffusion equations. Numerical experiments are carried out with Burgers' equation to demonstrate the accuracy of the new scheme which is sixth order in both space and time. Also a sixth order in space predictor-corrector method is proposed. A comparative study is performed of the proposed schemes with existing predictor-corrector method. The investigation of computational order of convergence is presented.



1: Paper Source PDF document

Paper's Title:

Results Concerning Fixed Point for Soft Weakly Contraction In Soft Metric Spaces

Author(s):

Abid Khan, Santosh Kumar Sharma, Anurag Choubey, Girraj Kumar Verma, Umashankar Sharma, Ramakant Bhardwaj

Department of Mathematics,
AUMP, Gwalior,
India.
abid69304@gmail.com

Department of Mathematics,
AUMP, Gwalior,
India.
sksharma1@gwa.amity.edu

Department of Computer Science,
Technocrats Institute of Technology,
Bhopal, MP,
India.
directoracademicstit@gmail.com

Department of Mathematics,
AUMP, Gwalior,
India.
gkverma@gwa.amity.edu

Department of Physics,
RJIT BSF Tekanpur, MP,
India.
ussharma001@gmail.com

School of Applied Science
AUK, WB,
India.
rkbhardwaj100@gmail.com

Abstract:

The basic objective of the proposed research work is to make people acquainted with the concept of soft metric space by generalizing the notions of soft (ψ,φ)-weakly contractive mappings in soft metric space, as well as to look at specific fundamental and topological parts of the underlying spaces. A compatible example is given to explain the idea of said space structure. The theory is very useful in decision making problems and secure transmission as fixed point provides exact output. The fixed-point theorems on subsets of Rm that are useful in game theoretic settings.


Search and serve lasted 0 second(s).


© 2004-2023 Austral Internet Publishing