|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Closedness and Skew Self-Adjointness of Nadir's Operator
Author(s):
Mostefa Nadir and Abdellatif Smati
Department of Mathematics,
University of Msila 28000,
ALGERIA.
E-mail: mostefanadir@yahoo.fr
E-mail: smatilotfi@gmail.com
Abstract:
In this paper, we present some sufficient conditions which ensure the compactness, the normality, the positivity, the closedness and the skew self-adjointness of the unbounded Nadir's operator on a Hilbert space. We get also when the measurement of its adjointness is null and other related results are also established.
Paper's Title:
Application of Chebyshev Polynomials to Volterra-Fredholm Integral Equations
Author(s):
Aissa Lakhal, Mostefa Nadir and Mohamed Nasseh Nadir
Department of Mathematics,
Faculty of Mathematics and
Informatics,
University of Msila,
Algeria.
E-mail:
aissa.lakhal@univ-msila.dz
mostefa.nadir@univ-msila.dz
nadir.mohamednasseh@yahoo.com
URL: https://www.mostefanadir.com
Abstract:
The goal of this work is to examine the numerical solution of linear Volterra-Fredholm integral equations of the second kind using the first, second, third and fourth Chebyshev polynomials. Noting that, the approximate solution is given in the form of series which converges to the exact one. Numerical examples are compared with other methods, in order to prove the applicability and the efficiency of this technical.
Paper's Title:
Euler Series Solutions for Linear Integral Equations
Author(s):
Mostefa Nadir and Mustapha Dilmi
Department of Mathematics,
University of Msila 28000,
ALGERIA.
E-mail: mostefanadir@yahoo.fr
E-mail: dilmiistapha@yahoo.fr
Abstract:
In this work, we seek the approximate solution of linear integral equations by truncation Euler series approximation. After substituting the Euler expansions for the given functions of the equation and the unknown one, the equation reduces to a linear system, the solution of this latter gives the Euler coefficients and thereafter the solution of the equation. The convergence and the error analysis of this method are discussed. Finally, we compare our numerical results by others.
Paper's Title:
On operators for which T2≥-T*2
Author(s):
Messaoud Guesba1 and Mostefa Nadir2
1Department
of Mathematics,
University of El Oued 39000,
Algeria
E-mail: guesbamessaoud2@gmail.com
2Department of Mathematics,
University of Msila 28000,
Algeria
E-mail: mostefanadir@yahoo.fr
Abstract:
In this paper we introduce the new class of operators for which T2≥ -T*2 acting on a complex Hilbert space H. We give some basic properties of these operators. we study the relation between the class and some other well known classes of operators acting on H.
Search and serve lasted 0 second(s).