


Paper's Title:
Some fixed point results in partial Smetric spaces
Author(s):
M. M. Rezaee, S. Sedghi, A. Mukheimer, K. Abodayeh, and Z. D. Mitrovic
Department of Mathematics, Qaemshahr
Branch,
Islamic Azad University, Qaemshahr,
Iran.
Email: Rezaee.mohammad.m@gmail.com
Department of Mathematics, Qaemshahr
Branch,
Islamic Azad University, Qaemshahr,
Iran.
Email: sedghi.gh@qaemiau.ac.ir
Department of Mathematics and General
Sciences,
Prince Sultan University, Riyadh,
KSA.
Email: mukheimer@psu.edu.sa
Department of Mathematics and General
Sciences,
Prince Sultan University, Riyadh,
KSA.
Email: kamal@psu.edu.sa
Nonlinear Analysis Research Group,
Faculty of Mathematics and Statistics,
Ton Duc Thang University, Ho Chi Minh City,
Vietnam.
Email: zoran.mitrovic@tdtu.edu.vn
Abstract:
We introduce in this article a new class of generalized metric spaces, called partial Smetric spaces. In addition, we also give some interesting results on fixed points in the partial Smetric spaces and some applications.
Paper's Title:
Formulation of Approximate Mathematical Model for Incoming Water to Some Dams on Tigris and Euphrates Rivers Using Spline Function
Author(s):
Nadia M. J. Ibrahem, Heba A. Abd AlRazak, and Muna M. Mustafa
Mathematics Department,
College of Sciences for Women,
University of Baghdad, Baghdad,
Iraq.
Email:
Nadiamj_math@csw.uobaghdad.edu.iq
Abstract:
In this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and AlHindya.
Paper's Title:
On Ruled Surfaces According to QuasiFrame in Euclidean 3Space
Author(s):
M. Khalifa Saad and R. A. AbdelBaky
Department of Mathematics, Faculty of
Science,
Islamic University of Madinah,
KSA.
Department of Mathematics, Faculty of Science,
Sohag University, Sohag,
EGYPT.
Email:
mohamed_khalifa77@science.sohag.edu.eg,
mohammed.khalifa@iu.edu.sa
Department of Mathematics, Faculty of
Science,
Assiut University, Assiut,
EGYPT.
Email: rbaky@live.com
Abstract:
This paper aims to study the skew ruled surfaces by using the quasiframe of Smarandache curves in the Euclidean 3space. Also, we reveal the relationship between SerretFrenet and quasiframes and give a parametric representation of a directional ruled surface using the quasiframe. Besides, some comparative examples are given and plotted which support our method and main results.
Paper's Title:
A new approach to the study of fixed point for simulation functions with application in Gmetric spaces
Author(s):
Komi Afassinou and Ojen Kumar Narain
Department of Mathematical Sciences,
University of Zululand,
KwaDlangezwa,
South Africa.
Email: komia@aims.ac.za
School of Mathematics, Statistics and
Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: naraino@ukzn.ac.za
Abstract:
The purpose of this work is to generalize the fixed point results of Kumar et al. [11] by introducing the concept of (α,β)Zcontraction mapping, Suzuki generalized (α,β)Zcontraction mapping, (α,β)admissible mapping and triangular (α,β)admissible mapping in the frame work of Gmetric spaces. Fixed point theorems for these class of mappings are established in the frame work of a complete Gmetric spaces and we establish a generalization of the fixed point result of Kumar et al. [11] and a host of others in the literature. Finally, we apply our fixed point result to solve an integral equation.
Paper's Title:
Solving NonAutonomous Nonlinear Systems of Ordinary Differential Equations Using MultiStage Differential Transform Method
Author(s):
K. A. Ahmad, Z. Zainuddin, F. A. Abdullah
School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM Penang
Malaysia.
Email: abumohmmadkh@hotmail.com
zarita@usm.my
farahaini@usm.my
Abstract:
Differential equations are basic tools to describe a wide variety of phenomena in nature such as, electrostatics, physics, chemistry, economics, etc. In this paper, a technique is developed to solve nonlinear and linear systems of ordinary differential equations based on the standard Differential Transform Method (DTM) and Multistage Differential Transform Method (MsDTM). Comparative numerical results that we are obtained by MsDTM and RungeKutta method are proposed. The numerical results showed that the MsDTM gives more accurate approximation as compared to the RungeKutta numerical method for the solutions of nonlinear and linear systems of ordinary differential equations
Search and serve lasted 1 second(s).