
The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 16, Issue 2, Article 15, pp. 1-17, 2019

A NEW APPROACH TO THE STUDY OF FIXED POINT FOR SIMULATION
FUNCTIONS WITH APPLICATION IN G-METRIC SPACES

KOMI AFASSINOU 1 AND OJEN KUMAR NARAIN 2

Received 18 April, 2019; accepted 15 November, 2019; published 16 December, 2019.

1 DEPARTMENT OFMATHEMATICAL SCIENCES, UNIVERSITY OF ZULULAND , KWADLANGEZWA ,
SOUTH AFRICA

komia@aims.ac.za

2 SCHOOL OFMATHEMATICS, STATISTICS AND COMPUTERSCIENCE, UNIVERSITY OF KWAZULU-NATAL ,
DURBAN, SOUTH AFRICA.
naraino@ukzn.ac.za

ABSTRACT. The purpose of this work is to generalize the fixed point results of Kumar et al.
[11] by introducing the concept of(α, β)-Z-contraction mapping, Suzuki generalized(α, β)-
Z-contraction mapping,(α, β)-admissible mapping and triangular(α, β)-admissible mapping
in the framework ofG-metric spaces. Fixed point theorems for these class of mappings are
established in the framework of a completeG-metric spaces and we establish a generalization of
the fixed point result of Kumar et al. [11] and a host of others in the literature. Finally, we apply
our fixed point result to solve an integral equation.

Key words and phrases:(α, β)-Z-contraction; Suzuki generalized(α, β)-Z contraction mappings; fixed point;G-metric
space.

2010Mathematics Subject Classification.Primary 47H09, 47H10. Secondary 49J20, 49J40.

ISSN (electronic): 1449-5910

c© 2019 Austral Internet Publishing. All rights reserved.

http://ajmaa.org/
mailto:<komia@aims.ac.za>
mailto:<naraino@ukzn.ac.za>
http://www.ams.org/msc/
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1. I NTRODUCTION AND PREMILINARIES

It is well-known that one of the most important notion in fixed point theory is to introduce new
contractive conditions and new iterative algorithm that generalizes new and existing contractive
mappings and iterative algorithms in the literature (see [1, 2, 3, 4, 6, 8, 10] and the reference
therein). In 2008, Suzuki [19] introduced the concept of mappings satisfying condition(C).
This is also known as Suzuki-type generalized nonexpansive mapping and he proved some
fixed point theorems for such class of mappings.

Definition 1.1. Let (X, d) be a metric space. A mappingT : X → X is said to satisfy condition
(C) if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Theorem 1.1. Let (X, d) be a compact metric space andT : X → X be a mapping satisfying
condition(C) for all x, y ∈ X. ThenT has a unique fixed point.

Samet et al. [15] introduced the notion ofα-admissible mapping and obtained some fixed point
results for this class of mappings.

Definition 1.2. [15] Let α : X × X → [0,∞) be a function. We say that a self mapping
T : X → X is α-admissible if for allx, y ∈ X,

α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 1.3. [15] Let T : X → X andα : X ×X → [0,∞) be mappings. We say thatT is
a triangularα-admissible if

(1) T is α-admissible and
(2) α(x, y) ≥ 1 andα(y, z) ≥ 1 ⇒ α(x, z) ≥ 1 for all x, y, z ∈ X.

Theorem 1.2. [15] Let (X, d) be a complete metric space andT : X → X be anα-admissible
mapping. Suppose that the following conditions hold:

(1) for all x, y ∈ X, we haveα(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), whereψ : [0,∞) → [0,∞)
is a nondecreasing function such that

∑∞
n=1 ψ

n(t) <∞ for all t > 0;
(2) there existsx0 ∈ X such thatα(x0, Tx0) ≥ 1;
(3) either T is continuous or for any sequence{xn} in X with α(xn, xn+1) ≥ 1 for all

n ≥ 0 andxn → x asn→∞, thenα(xn, x) ≥ 1.

ThenT has a fixed point.

In [5] Chandok extended and improved the concept ofα-admissible by introducing the notion
of (α, β)-admissible mapping and obtained some fixed point theorems.

Definition 1.4. [5] Let X be a nonempty set andα, β : X × X → [0,∞) be functions. We
say that a self mappingT : X → X is (α, β)-admissible if for allx, y ∈ X, α(x, y) ≥ 1 and
β(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1 andβ(Tx, Ty) ≥ 1.

In 2015, Khojasteh et al. [9] introduced the notion ofZ-contraction which generalizes the well-
known Banach contraction and a host of other contractive conditions. They gave the following
definition forZ as follows.

Definition 1.5. Let ζ : [0,∞)×[0,∞) → R be a mapping, thenζ is called a simulation function
if it satisfies the following conditions:
ζ(i) ζ(0, 0) = 0;
ζ(ii) ζ(t, s) < s− t, for all t, s > 0;
ζ(iii) if {tn}, {sn} are sequences in(0,∞) such thatlimn→∞ tn = limn→∞ sn > 0, then
lim supn→∞ ζ(tn, sn) < 0.
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We denote the set of all simulation functions byZ.

Definition 1.6. Let (X, d) be a metric space,T : X → X a mapping andζ ∈ Z. ThenT is
called aZ-contraction with respect toζ, if the following condition is satisfied

ζ(d(Tx, Ty), d(x, y)) > 0,

for all distinctx, y ∈ X.

Example 1.1.Supposeζ i : [0,∞)2 → [0,∞), i = 1, 2, 3, 4 defined as

(1) ζ1(t, s) = s− φ(s)− t for all t, s ∈ [0,∞) whereφ : [0,∞) → [0,∞) is a continuous
function such thatφ(t) = 0 if and only ift = 0.

(2) ζ2(t, s) = η(s) − t for all t, s ∈ [0,∞) whereη : [0,∞) → [0,∞) be an upper
semicontinuous mapping such thatη(t) < t for all t > 0 η(t) = 0 if and only ift = 0.

(3) ζ3(t, s) = λs− t for all t, s ∈ [0,∞) where0 < λ < 1.
(4) ζ4(t, s) = s

s+1
− t for all t, s ∈ [0,∞).

Theorem 1.3.Let (X, d) be a complete metric space andT : X → X be aZ-contraction with
respect to a simulation functionζ ∈ Z. ThenT has a unique fixed pointx∗ ∈ X and for every
x0 ∈ X, the Picard sequence{xn}, wherexn = Txn−1 for all n ∈ N converges to the fixed
point ofT.

Recently, Kumam et al. [10] introduced the notion of Suzuki typeZ-contraction with respect to
ζ in the framework of metric spaces. They established some fixed point results for this class of
mapping and also show that the Suzuki typeZ-contraction with respect toζ is a generalization
of Z-contraction mapping with respect toζ. They gave the following definition and result.

Definition 1.7. Let (X, d) be a metric space,T : X → X a mapping andζ ∈ Z. ThenT is
called a Suzuki typeZ-contraction with respect toζ, if the following condition is satisfied

1

2
d(x, Tx) < d(x, y) ⇒ ζ(d(Tx, Ty), d(x, y)) > 0,

for all distinctx, y ∈ X.

Theorem 1.4.Let(X, d) be a complete metric space andT : X → X be a SuzukiZ-contraction
with respect to a simulation functionζ ∈ Z. ThenT has a unique fixed point.

Mustafa and Sims [13] introduced the concept of generalized metric space(G-metric) and they
established some fixed point theorems in the framework of completeG-metric spaces.

Definition 1.8. LetX be a nonempty set andG : X ×X ×X → R+ be a function satisfying
the following properties

(1) G(x, y, z) = 0 if and only if x = y = z,
(2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,
(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,
(4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all the three variables),
(5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

The functionG is called aG-metric onX and the pair(X,G) is called aG-metric space.

Definition 1.9. A G-metric space is said to be symmetric ifGb(x, y, y) = Gb(y, x, x) for all
x, y ∈ X.

Proposition 1.5. LetX be aG-metric space. Then for eachx, y, z, a ∈ X, it follows that

(1) G(x, y, z) = 0 thenx = y = z,
(2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),
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(3) G(x, y, y) ≤ 2G(y, x, x),
(4) G(x, y, z) ≤ G(x, a, z) +G(a, y, z).

Definition 1.10. LetX be aG-metric space. A sequence{xn} in X is said to be:
(1) G-Cauchy if for eachε > 0 there exists a positive integern0 such that for allm,n, l ≥

n0, G(xn, xm, xl) < ε;
(2) G-convergent to a pointx ∈ X, if for ε > 0 there exists a positive integern0 such that

for all m,n ≥ n0, G(xn, xm, x) < ε. That islimn,m→∞G(xn, xm, x) = 0. We callx the
limit of the sequence{xn} and writexn → x or limn→∞ xn = x.

Definition 1.11. A G-metric space is calledG-complete, if everyG-Cauchy sequence isG-
convergent inX.

Proposition 1.6. Let (X,G) be aG-metric space. The following statements are equivalent:
(1) xn isG-convergent tox;
(2) G(xn, xn, x) → 0 asn→∞;
(3) G(xn, x, x) → 0 asn→∞;
(4) G(xn, xm, x) → 0 asm,n→∞.

Proposition 1.7. Let (X,G) be aG-metric space. The following statements are equivalent:
(1) {xn} isG-Cauchy sequence.
(2) G(xm, xn, xn) → 0 asn,m→∞.

Very recently, Kumar et al. [11] introduced the concept ofZ-contraction with respect toζ in the
framework ofG-metric spaces. They establish some fixed point results and gave an example to
support their main result.

Definition 1.12. Let (X,G) be aG-metric space,T : X → X a mapping andζ ∈ Z. ThenT is
called aZ-contraction with respect toζ, if the following condition is satisfied

ζ(G(Tx, Ty, Tz), G(x, y, z)) > 0,

for all distinctx, y, z ∈ X.

Theorem 1.8. Let (X,G) be a completeG-metric space andT : X → X be aZ-contraction
with respect to a simulation functionζ ∈ Z. ThenT has a unique fixed pointx∗ ∈ X and for
everyx0 ∈ X, the Picard sequence{xn}, wherexn = Txn−1 for all n ∈ N converges to the
fixed point ofT.

Motivated by the research works of Khojasteh et al. [9], Kuman et al. [10], Kumar et al. [11]
and the research work in this direction, our purpose in this paper is to introduce the notion
of (α, β)-Z-contraction mapping and Suzuki generalized(α, β)-Z-contraction mapping with
respect toζ in the frameworkG-metric spaces. We prove some fixed point results for these
types of mappings and then give some examples to support our main results.

2. MAIN RESULT

In this section, we introduce the notion of(α, β)-admissible mapping, triangular(α, β)-admissible
mapping,(α, β)-Z-contraction mapping and Suzuki generalized(α, β)-Z-contraction mapping
with respect toζ in the frameworkG-metric spaces and established the existence and unique-
ness results of the fixed point for this class of mappings.

Definition 2.1. Let X be a nonempty set,T : X → X andα, β : X × X × X → [0,∞) be
mappings. ThenT is called(α, β)-admissible if for allx, y, z ∈ X with α(x, y, z) ≥ 1 and
β(x, y, z) ≥ 1 impliesα(Tx, Ty, Tz) ≥ 1 andβ(Tx, Ty, Tz) ≥ 1.
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Definition 2.2. Let X be a nonempty set,T : X → X andα, β : X × X × X → [0,∞) be
mappings. ThenT is called triangular(α, β)-admissible if

(1) T is (α, β)-admissible,
(2) α(x, a, a) ≥ 1, α(a, y, z) ≥ 1 andβ(x, a, a) ≥ 1, β(a, y, z) ≥ 1 impliesα(x, y, z) ≥ 1

andβ(x, y, z) ≥ 1,

for all x, y, z, a ∈ X.

Lemma 2.1. LetX be a nonempty set andT be a triangular(α, β)-admissible mapping and
there existsx0 ∈ X such thatα(x0, Tx0, Tx0) ≥ 1 andβ(x0, Tx0, Tx0) ≥ 1. Suppose that the
sequence{xn} is defined byxn+1 = Txn, thenα(xm, xn, xn) ≥ 1 andβ(xm, xn, xn) ≥ 1 for
all n,m ∈ N ∪ {0}, withm < n.

Proof. Suppose thatT is triangular(α, β)-admissible mapping and there existsx0 ∈ X such
that α(x0, Tx0, Tx0) ≥ 1 andβ(x0, Tx0, Tx0) ≥ 1, we then have thatα(x0, Tx0, Tx0) =
α(x0, x1, x1) ≥ 1 andβ(x0, Tx0, Tx0) = β(x0, x1, x1) ≥ 1,which implies thatα(Tx0, Tx1, Tx1)
= α(x1, x2, x2) ≥ 1 and β(Tx0, Tx1, Tx1) = β(x1, x2, x2) ≥ 1. Continuing the process,
we obtain thatα(xn, xn+1, xn+1) ≥ 1 andβ(xn, xn+1, xn+1) ≥ 1. For all n,m ∈ N ∪ {0}
with m < n, now observed that sinceα(xm, xm+1, xm+1) ≥ 1, β(xm, xm+1, xm+1) ≥ 1
andα(xm+1, xm+2, xm+2) ≥ 1, β(xm+1, xm+2, xm+2) ≥ 1, we obtainα(xm, xm+2, xm+2) ≥
1, β(xm, xm+2, xm+2) ≥ 1. Also, sinceα(xm, xm+2, xm+2) ≥ 1, β(xm, xm+2, xm+2) ≥ 1
andα(xm+2, xm+3, xm+3) ≥ 1, β(xm+2, xm+3, xm+3) ≥ 1, we obtainα(xm, xm+3, xm+3) ≥
1, β(xm, xm+3, xm+3) ≥ 1. Continuing the process, we have that

α(xm, xn, xn) ≥ 1 andβ(xm, xn, xn) ≥ 1.

Definition 2.3. Let (X,G) be aG-metric space,α, β ×X ×X → [0,∞) be a function andT
be a self map onX. The mappingT is said to be(α, β)-Z-contraction mapping with respect to
ζ, if

ζ(α(x, y, z)β(x, y, z)G(Tx, Ty, Tz), G(x, y, z)) ≥ 0(2.1)

for all distinctx, y, z ∈ X.

Remark 2.1. If we takeα(x, y, z)β(x, y, z) = 1, we obtain Definition 1.12.

Remark 2.2. It is easy to see from the definition ofζ thatζ(t, s) < 0, for all t ≥ s > 0. Hence,
T is an(α, β)-Z-contraction with respect toζ, then

α(x, y, z)β(x, y, z)G(Tx, Ty, Tz) < G(x, y, z)

for all distinctx, y, z ∈ X.

Theorem 2.2. Let (X,G) be aG-complete metric space andT : X → X be an(α, β)-Z-
contraction mapping with respect toζ. Suppose the following conditions hold:

(1) T is (α, β)-admissible mapping,
(2) there existsx0 ∈ X such thatα(x0, Tx0, Tx0) ≥ 1 andβ(x0, Tx0, Tx0) ≥ 1,
(3) if for any sequence{xn} in X with α(xn, xn+1, xn+1) ≥ 1, β(xn, xn+1, xn+1) ≥ 1 for

all n ≥ 0 andxn → x asn→∞, thenα(xn, x, x) ≥ 1 andβ(xn, x, x) ≥ 1

ThenT has a fixed point.

Proof. To establish thatT has a fixed point, we divide the proof into four steps.

Step 1: We will establish thatlimn→∞G(xn, xn+1, xn+1) = 0.

AJMAA, Vol. 16, No. 2, Art. 15, pp. 1-17, 2019 AJMAA

http://ajmaa.org


6 K. A FASSINOU AND O. K. NARAIN

Letx0 ∈ X be such thatα(x0, Tx0, Tx0) ≥ 1 andβ(x0, Tx0, Tx0) ≥ 1.We define the sequence
{xn} by xn+1 = Txn for all n ∈ N ∪ {0}. If we suppose thatxn+1 = xn, for somen ∈
N ∪ {0}, we obtain the desired result. Now, suppose thatxn+1 6= xn for all n ∈ N ∪ {0}. Since
T is (α, β)-admissible mapping andα(x0, x1, x1) = α(x0, Tx1, Tx1) ≥ 1, β(x0, x1, x1) =
β(x0, Tx1, Tx1) ≥ 1, we have thatα(x1, x2, x2) = α(Tx0, Tx1, Tx1) ≥ 1, andβ(x1, x2, x2) =
β(Tx0, Tx1, Tx1) ≥ 1, continuing this process, we obtain thatα(xn, xn+1, xn+1) ≥ 1 and
β(xn, xn+1, xn+1) ≥ 1 for all n ∈ N ∪ {0}. As such we have that

α(xn, xn+1, xn+1)β(xn, xn+1, xn+1) ≥ 1

for all n ∈ N ∪ {0}. We obtain from (2.1) and usingζ(ii) that

0 ≤ ζ(α(xn, xn+1, xn+1)β(xn, xn+1, xn+1)G(Txn, Txn+1, Txn+1), G(xn, xn+1, xn+1))

= ζ(α(xn, xn+1, xn+1)β(xn, xn+1, xn+1)G(xn+1, xn+2, xn+2), G(xn, xn+1, xn+1))(2.2)

< G(xn, xn+1, xn+1)− α(xn, xn+1, xn+1)β(xn, xn+1, xn+1)G(xn+1, xn+2, xn+2).

From (2.2), we obtain

G(xn+1, xn+2, xn+2) ≤ α(xn, xn+1, xn+1)β(xn, xn+1, xn+1)G(xn+1, xn+2, xn+2)

< G(xn, xn+1, xn+1).(2.3)

It is easy to see from (2.3) that the sequence{G(xn, xn+1, xn+1)} is a monotonically decreasing
sequence of nonnegative real. Therefore, there existsc ≥ 0 such that

lim
n→∞

G(xn, xn+1, xn+1) = c.

Suppose thatc > 0, clearly limn→∞G(xn+1, xn+2, xn+2) = c and from (2.3), using the Sand-
wich Theorem we have thatlimn→∞ α(xn, xn+1, xn+1)β(xn, xn+1, xn+1)G(xn+1, xn+2, xn+2) =
c. SinceT is an(α, β)-Z-contraction mapping with respect toζ ∈ Z and usingζ(iii), we have

0 ≤ lim sup
n→∞

ζ(α(xn, xn+1, xn+1)β(xn, xn+1, xn+1)G(xn+1, xn+2, xn+2), G(xn, xn+1, xn+1)) < 0.

This is a contradiction, thusc = 0 and so we have that

lim
n→∞

G(xn, xn+1, xn+1) = 0.(2.4)

Step 2: We will establish that{xn} is bounded.

Suppose that{xn} is not a bounded sequence, then there exists a subsequence{xnk
} of {xn}

such thatn1 = 1 and for eachk ∈ N, nk+1 is the minimum integer such that

G(xnk+1
, xnk

, xnk
) > 1 andG(xm, xnk

, xnk
) ≤ 1(2.5)

for nk ≤ m ≤ nk+1 − 1. Using the triangular inequality, (2.5) and Proposition 1.5(3), we have

1 < G(xnk+1
, xnk

, xnk
) ≤ G(xnk+1

, xnk+1−1, xnk+1−1) +G(xnk+1−1, xnk
, xnk

)

≤ 2G(xnk+1−1, xnk+1
, xnk+1

) + 1.

Lettingk →∞ and using (2.4), we obtain

lim
k→∞

G(xnk+1
, xnk

, xnk
) = 1.

Using the definition of(α, β)-Z-contraction with respect toζ, we obtain

α(xnk+1−1, xnk−1, xnk−1)β(xnk+1−1, xnk−1, xnk−1)G(xnk+1
, xnk

, xnk
) ≤ G(xnk+1−1, xnk−1, xnk−1),

AJMAA, Vol. 16, No. 2, Art. 15, pp. 1-17, 2019 AJMAA

http://ajmaa.org


SIMULATION FUNCTIONS WITH APPLICATION IN G-METRIC SPACES 7

and it follows that

G(xnk+1
, xnk

, xnk
) ≤ α(xnk+1−1, xnk−1, xnk−1)β(xnk+1−1, xnk−1, xnk−1)G(xnk+1

, xnk
, xnk

)

≤ G(xnk+1−1, xnk−1, xnk−1),

using the triangular inequality, (2.5) and Proposition 1.5(3), we have that

1 < G(xnk+1
, xnk

, xnk
) ≤ α(xnk+1−1, xnk−1, xnk−1)β(xnk+1−1, xnk−1, xnk−1)G(xnk+1

, xnk
, xnk

)

≤ G(xnk+1−1, xnk−1, xnk−1)

≤ G(xnk+1−1, xnk
, xnk

) +G(xnk
, xnk−1, xnk−1)

≤ 1 + 2G(xnk−1, xnk
, xnk

).

Lettingk →∞ and using (2.4), we obtain

lim
n→∞

α(xnk+1−1, xnk−1, xnk−1)β(xnk+1−1, xnk−1, xnk−1)G(xnk+1
, xnk

, xnk
) = 1

by definition of(α, β)-Z-contraction with respect toζ, and byζ(iii), we obtain

0 ≤ lim sup
k→∞

ζ(α(xnk+1−1, xnk−1, xnk−1)β(xnk+1−1, xnk−1, xnk−1)G(Txnk+1−1, Txnk−1, Txnk−1),

G(xnk+1−1, xnk−1, xnk−1))

≤ lim sup
k→∞

ζ(α(xnk+1−1, xnk−1, xnk−1)β(xnk+1−1, xnk−1, xnk−1)G(xnk+1
, xnk

, xnk
),

G(xnk+1−1, xnk−1, xnk−1)) < 0.

This is a contradiction. Thus{xn} is bounded.

Step 3: We will establish that{xn} is Cauchy.

Suppose thatCn = sup{G(xi, xj, xj) : i, j ≥ n}, n ∈ N. Since{xn} is bounded, we have
thatCn <∞ for all n ∈ N, as suchCn is a positive monotonically decreasing sequence which
converges. That islimn→∞Cn = C ≥ 0. Suppose thatC > 0, then by definition ofCn for
everyk ∈ N, we can findnk,mk such thatmk > nk > k and

Cn −
1

K
< G(xmk

, xnk
, xnk

) ≤ Ck,

lettingk →∞, we obtain

lim
k→∞

G(xmk
, xnk

, xnk
) = C.(2.6)

Now, observe that

G(xmk
, xnk

, xnk
) ≤ G(xmk

, xmk−1
, xmk−1

) +G(xmk−1
, xnk−1

, xnk−1
) +G(xnk−1

, xnk
, xnk

)

≤ 2G(xmk−1
, xmk

, xmk
) +G(xmk−1

, xnk−1
, xnk−1

) +G(xnk−1
, xnk

, xnk
)

and

G(xmk−1
, xnk−1

, xnk−1
) ≤ G(xmk−1

, xmk
, xmk

) +G(xmk
, xnk

, xnk
) +G(xnk

, xnk−1
, xnk−1

)

≤ G(xmk−1
, xmk

, xmk
) +G(xmk

, xnk
, xnk

) + 2G(xnk−1
, xnk

, xnk
).

Lettingk →∞ and using (2.4) and (2.6), we obtain

lim
k→∞

G(xmk−1
, xnk−1

, xnk−1
) = C.(2.7)
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By definition of(α, β)-Z-contraction with respect toζ, we have that

G(xmk
, xnk

, xnk
) ≤ α(xmk−1

, xnk−1
, xnk−1

)β(xmk−1
, xnk−1

, xnk−1
)G(xmk

, xnk
, xnk

)

≤ G(xmk−1
, xnk−1

, xnk−1
),

it is easy to see that

lim
n→∞

α(xmk−1
, xnk−1

, xnk−1
)β(xmk−1

, xnk−1
, xnk−1

)G(xmk
, xnk

, xnk
) = C(2.8)

Then using (2.8), (2.7) andζ(iii), we have

0 ≤ lim sup
n→∞

ζ(α(xmk−1
, xnk−1

, xnk−1
)β(xmk−1

, xnk−1
, xnk−1

)G(Txmk−1, Txnk−1, Txnk−1),

G(xmk−1
, xnk−1

, xnk−1
))

≤ lim sup
n→∞

ζ(α(xmk−1
, xnk−1

, xnk−1
)β(xmk−1

, xnk−1
, xnk−1

)G(xmk
, xnk

, xnk
),

G(xmk−1
, xnk−1

, xnk−1
)) < 0.

This is a contradiction, thusC = 0. Hence,{xn} is a Cauchy sequence.

Step 4: We will establish thatT has a fixed point.

Since{xn} is a Cauchy sequence andX is a completeG-metric space, there existsx ∈ X such
that limn→∞ xn = x. Using condition(3), sinceα(xn, x, x) ≥ 1, β(xn, x, x) ≥ 1, we have
thatα(xn, x, x)β(xn, x, x) ≥ 1, and sinceT is (α, β)-Z-contraction with respect toζ and using
ζ(iii), we obtain

0 ≤ ζ(α(xn, x, x)β(xn, x, x)G(Txn, Tx, Tx), G(xn, x, x))

< G(xn, x, x)− α(xn, x, x)β(xn, x, x)G(xn+1, Tx, Tx, ),

it follows that

G(xn+1, Tx, Tx, ) ≤ α(xn, x, x)β(xn, x, x)G(xn+1, Tx, Tx, ) ≤ G(xn, x, x).

Lettingn→∞, we obtaing

G(x, Tx, Tx, ) ≤ α(x, x, x)β(x, x, x)G(x, Tx, Tx, ) ≤ G(x, x, x) = 0.

in the above inequality, we must have thatG(x, Tx, Tx) = 0, that is,x = Tx.

Example 2.1. LetX = [0,∞) andG : X × X × X → [0,∞) be defined asG(x, y, z) =
max{|x− y|, |y − z|, |z − x|} for all x, y ∈ X. It is clear that(X,G) is aG-metric space. We
definedT : X → X by

Tx =

{
x
10

if x ∈ [0, 1]

2x− 11
8

if x ∈ (1,∞),

α, β : X ×X ×X → [0,∞) by

α(x, y, z) =

{
1 if x, y, z ∈ [0, 1]

0 if x, y, z ∈ (1,∞),

β(x, y, z) =

{
2 if x, y, z ∈ [0, 1]

0 if x, y, z ∈ (1,∞),
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SIMULATION FUNCTIONS WITH APPLICATION IN G-METRIC SPACES 9

andζ(t, s) = 1
2
s− t. ThenT is an(α, β)-Z-contraction mapping with respect toζ and that that

Theorem 1.8 is not applicable.

Proof. It is easy to see thatT is triangular(α, β)-admissible mapping for anyx, y, z ∈ [0, 1] and
that for anyx0 ∈ [0, 1], we haveα(x0, Tx0, Tx0) = 1 andβ(x0, Tx0, Tx0) = 2. Now suppose
that{xn} is a sequence inX with α(xn, xn+1, xn+1) ≥ 1 for all n ∈ N ∪ 0 and thatxn → x
asn → ∞, from the definition ofα andβ, it is clear that{xn} ⊂ [0, 1], as suchx ∈ [0, 1].
Thusα(xn, x, x) = 1 andβ(xn, x, x) = 2 > 1 for all n ∈ N ∪ 0. Sinceα(x, y, z) = 1 and
β(x, y, z) = 2 > 1if x, y, z ∈ [0, 1], we need to show that

ζ(α(x, y, z)β(x, y, z)G(Tx, Ty, Tz), G(x, y, z)) ≥ 0

for anyx, y, z ∈ [0, 1]. Without loss of generality, we suppose thatx ≥ y ≥ z, so that

ζ(α(x, y, z)β(x, y, z)G(Tx, Ty, Tz), G(x, y, z)) = ζ
(
2G

( x
10
,
y

10
,
z

10

)
, G(x, y, z)

)
= ζ

(
2 max

{∣∣∣∣ x10
− y

10

∣∣∣∣, ∣∣∣∣ y10
− z

10

∣∣∣∣, ∣∣∣∣ z10
− x

10

∣∣∣∣},max{|x− y|, |y − z|, |z − x|}
)

= ζ
(1

5
|z − x|, |z − x|

)
=

1

2
|z − x| − 1

5
|z − x| ≥ 0.

Thus,T is an(α, β)-Z-contraction with respect toζ. However, to show that Theorem 1.8 is not
applicable, suppose thatx = 10, y = 2 andz = 0. Now, observe that

ζ(G(Tx, Ty, Tz), G(x, y, z)) = ζ
(
G

(21

8
,

1

10
, 0

)
, G(2, 1, 0)

)
= ζ

(
max

{∣∣∣∣21

8
− 1

10

∣∣∣∣, ∣∣∣∣ 1

10
− 0

∣∣∣∣, ∣∣∣∣0− 21

8

∣∣∣∣},max{|2− 1|, |1− 0|, |0− 1|}
)

= ζ
(21

8
, 1

)
=

1

2
− 21

8
< 0.

Remark 2.3. It is clear from the above example thatT has two fixed pointsx = 0 andx = 31
8
.

For the uniqueness of the fixed point, we need additional conditions.

Theorem 2.3. Suppose that the hypothesis of Theorem 2.2 holds and in addition suppose
α(x, y, y) ≥ 1 andβ(x, y, y) ≥ 1 for all x, y ∈ F (T ), whereF (T ) is the set of fixed point
of T. ThenT has a unique fixed point.

Proof. Let x, y ∈ F (T ), that isTx = x andTy = y such thatx 6= y. Using our hypothesis that
α(x, y, y) ≥ 1, ζ(iii), we obtain from 2.1 that

0 ≤ ζ(α(x, y, y)β(x, y, y)G(Tx, Ty, Ty), G(x, y, y))

< G(x, y, y)− α(x, y, y)β(x, y, y)G(Tx, Ty, Ty)

= G(x, y, y)− α(x, y, y)β(x, y, y)G(x, y, y)

≤ 0,

which is a contradiction, as such, we must have thatG(x, y, y) = 0 ⇒ x = y. Hence,T has a
unique fixed point.

Example 2.2. LetX = [0,∞) andG : X × X × X → [0,∞) be defined asG(x, y, z) =
max{|x− y|, |y − z|, |z − x|} for all x, y ∈ X. It is clear that(X,G) is aG-metric space. We
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definedT : X → X by

Tx =

{
x
13

if x ∈ [0, 1]

2x if x ∈ (1,∞),

α, β : X ×X ×X → [0,∞) by

α(x, y, z) =

{
2 if x, y, z ∈ [0, 1]

0 if x, y, z ∈ (1,∞),

β(x, y, z) =

{
3 if x, y, z ∈ [0, 1]

0 if x, y, z ∈ (1,∞),

andζ(t, s) = 1
2
s − t. ThenT is an (α, β)-Z-contraction mapping with respect toζ but not an

Z-contraction mapping with respect toζ as defined by Kumar et al.[11].

Proof. It is easy to see thatT is triangular(α, β)-admissible mapping for anyx, y, z ∈ [0, 1]
and that for anyx0 ∈ [0, 1], we haveα(x0, Tx0, Tx0) = 2 > 1 andβ(x0, Tx0, Tx0) = 3 > 1.
Now suppose that{xn} is a sequence inX with α(xn, xn+1, xn+1) ≥ 1 for all n ∈ N ∪ 0
and thatxn → x asn → ∞, from the definition ofα andβ, it is clear that{xn} ⊂ [0, 1], as
suchx ∈ [0, 1]. Thusα(xn, x, x) = 2 > 1 andβ(xn, x, x) = 3 > 1 for all n ∈ N ∪ 0. Since
α(x, y, z) = 2 > 1 andβ(x, y, z) = 3 > 1 if x, y, z ∈ [0, 1], we need to show that

ζ(α(x, y, z)β(x, y, z)G(Tx, Ty, Tz), G(x, y, z)) ≥ 0

for anyx, y, z ∈ [0, 1]. Without loss of generality, we suppose thatx ≥ y ≥ z, so that

ζ(α(x, y, z)β(x, y, z)G(Tx, Ty, Tz), G(x, y, z)) = ζ

(
6G

(x
2
,
y

2
,
z

2

)
, G(x, y, z)

)
= ζ

(
6 max

{∣∣∣∣ x13
− y

13

∣∣∣∣, ∣∣∣∣ y13
− z

13

∣∣∣∣, ∣∣∣∣ z13
− x

13

∣∣∣∣},max
{
|x− y|, |y − z|, |z − x|

})
= ζ

(
6

13
|z − x|, |z − x|

)
=

1

26
|z − x| ≥ 0.

Thus,T is an(α, β)-Z-contraction with respect toζ and all the hypotheses of Theorem 2.3 are
satisfied withx = 0 the unique fixed point ofT.
However, to show that Theorem 1.8 is not applicable, letx = 2, y = 1 andz = 0 Now, observe
that

ζ(G(Tx, Ty, Tz), G(x, y, z)) = ζ

(
G

(
4,

1

13
, 0

)
, G(2, 1, 0)

)
= ζ

(
max

{∣∣∣∣4− 1

13

∣∣∣∣, ∣∣∣∣ 1

13
− 0

∣∣∣∣, |0− 4|
}
,max

{
|2− 1|, |1− 0|, |0− 2|

})
= ζ(4, 2) = 1− 4 < 0.

Remark 2.4. It is clear from the above result and example that our result generalizes the result
of Kurmam et al. [11]. Also our result extends and improves the results of Khojasteh et al. [9],
Kumam et al. [10] and a host of other results in the literature.
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Definition 2.4. Let (X,G) be aG-metric space,α, β : X×X×X → [0,∞) be a function and
T be a self map onX. The mappingT is said to be Suzuki generalized(α, β)-Z-contraction
mapping with respect toζ, if

α(x, y, z)β(x, y, z) ≥ 1 and
1

3
G(x, Tx, Tx) ≤ G(x, y, z) ⇒ ζ(G(Tx, Ty, Tz),M(x, y, z)) ≥ 0,

(2.9)

whereM(x, y, z) = max{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Tz)} for all distinctx, y, z ∈ X.

Remark 2.5. It is easy to see from the definition ofζ thatζ(t, s) < 0, for all t ≥ s > 0. Hence,
T is a Suzuki generalized(α, β)-Z-contraction with respect toζ, then

α(x, y, z)β(x, y, z) ≥ 1 and
1

3
G(x, Tx, Tx) ≤ G(x, y, z) ⇒ G(Tx, Ty, Tz) < M(x, y, z)

for all distinctx, y, z ∈ X.

Theorem 2.4.Let (X,G) be aG-complete metric space andT : X → X be a Suzuki general-
ized(α, β)-Z-contraction mapping with respect toζ. Suppose the following conditions hold:

(1) T is triangular (α, β)-admissible mapping,
(2) there existsx0 ∈ X such thatα(x0, Tx0, Tx0) ≥ 1 andβ(x0, Tx0, Tx0) ≥ 1,
(3) if for any sequence{xn} in X with α(xn, xn+1, xn+1) ≥ 1 andβ(xn, xn+1, xn+1) ≥ 1

for all n ≥ 0 andxn → x asn→∞, thenα(xn, x, x) ≥ 1 andβ(xn, x, x) ≥ 1.

ThenT has a fixed point.

Proof. To establish thatT has a fixed point, we divide the proof into four steps.

Step 1: We will establish thatlimn→∞G(xn, xn+1, xn+1) = 0.

We define the sequence{xn} byxn+1 = Txn for all n ∈ N∪{0}. If we suppose thatxn+1 = xn,
for somen ∈ N, we obtain the desired result. Now, suppose thatxn+1 6= xn for all n ∈ N∪{0}.
Since1

3
G(xn, Txn, Txn) = 1

3
G(xn, xn+1, xn+1) ≤ G(xn, xn+1, xn+1), and from Lemma 2.1, it

is easy to see thatα(xn, xn+1, xn+1)β(xn, xn+1, xn+1) ≥ 1, we obtain from (2.9)

0 ≤ ζ(G(Txn, Txn+1, Txn+1),M(xn, xn+1, xn+1))

= ζ(G(xn+1, xn+2, xn+2),M(xn, xn+1, xn+1))(2.10)

< M(xn, xn+1, xn+1)−G(xn+1, xn+2, xn+2),

where

M(xn, xn+1, xn+1) = max{G(xn, xn+1, xn+1), G(xn, xn+1, xn+1), G(xn+1, xn+2, xn+2)}
= max{G(xn, xn+1, xn+1), G(xn+1, xn+2, xn+2)}.

If we suppose thatmax{G(xn, xn+1, xn+1), G(xn+1, xn+2, xn+2)} = G(xn+1, xn+2, xn+2), we
obtain from (2.10) that

0 ≤ ζ(G(xn+1, xn+2, xn+2),M(xn, xn+1, xn+1)) < G(xn+1, xn+2, xn+2)−G(xn+1, xn+2, xn+2) < 0,

which is a contradiction, as such

max{G(xn, xn+1, xn+1), G(xn+1, xn+2, xn+2)} = G(xn, xn+1, xn+1),

that is,
G(xn+1, xn+2, xn+2) ≤ G(xn, xn+1, xn+1).
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Thus, we obtain from (2.10) that

0 ≤ ζ(G(xn+1, xn+2, xn+2),M(xn, xn+1, xn+1)) < G(xn, xn+1, xn+1)−G(xn+1, xn+2, xn+2)

It is easy to see that the sequence{G(xn, xn+1, xn+1)} is a monotonically decreasing sequence
of nonnegative real numbers. As such, there existsc ≥ 0 such that

lim
n→∞

G(xn, xn+1, xn+1) = c.

Now, suppose thatc > 0, sinceT is a Suzuki generalized(α, β)-Z-contraction mapping with
respect toζ and usingζ(iii), we have

0 ≤ lim sup
n→∞

ζ(G(xn+1, xn+2, xn+2), G(xn, xn+1, xn+1)) < 0.

This is a contradiction, thusc = 0 and so we have that

lim
n→∞

G(xn, xn+1, xn+1) = 0.(2.11)

Step 2: We will establish that{xn} is bounded.

Suppose that{xn} is not a bounded sequence, then there exists a subsequence{xnk
} of {xn}

such thatn1 = 1 and for eachk ∈ N, nk+1 is the minimum integer such that

G(xnk+1
, xnk

, xnk
) > 1 andG(xm, xnk

, xnk
) ≤ 1(2.12)

for nk ≤ m ≤ nk+1 − 1. Using the triangular inequality, (2.12) and Proposition 1.5(3), we
have

1 < G(xnk+1
, xnk

, xnk
) ≤ G(xnk+1

, xnk+1−1, xnk+1−1) +G(xnk+1−1, xnk
, xnk

)

≤ 2G(xnk+1−1, xnk+1
, xnk+1

) + 1.

Lettingk →∞ and using (2.11), we obtain

lim
k→∞

G(xnk+1
, xnk

, xnk
) = 1.

Since1
3
G(xnk+1−1, Txnk−1, Txnk−1) = 1

3
G(xnk+1−1, xnk

, xnk
) < G(xnk+1−1, xnk

, xnk
) and from

Lemma 2.1, we obtain thatα(xnk+1−1, xnk
, xnk

)β(xnk+1−1, xnk
, xnk

) ≥ 1, by definition of
Suzuki generalized(α, β)-Z-contraction with respect toζ, we obtain

G(xnk+1
, xnk

, xnk
) ≤M(xnk+1−1, xnk−1, xnk−1),

it follows that

1 < G(xnk+1
, xnk

, xnk
) ≤M(xnk+1−1, xnk−1, xnk−1)

= max{G(xnk+1−1, xnk−1, xnk−1), G(xnk−1, xnk+1
, xnk+1

), G(xnk−1, xnk
, xnk

)}
≤ max{G(xnk+1−1, xnk

, xnk
) +G(xnk

, xnk−1, xnk−1), G(xnk−1, xnk
, xnk

)

+G(xnk
, xnk+1

, xnk+1
), G(xnk−1, xnk

, xnk
)}

≤ max{1 + 2G(xnk−1, xnk
, xnk

), 1 +G(xnk
, xnk+1

, xnk+1
), G(xnk−1, xnk

, xnk
)}.

Lettingk →∞ and using (2.11), we obtain

lim
k→∞

M(xnk+1−1, xnk−1, xnk−1) = 1.

Furthermore, since

1

3
G(xnk+1−1, Txnk−1, Txnk−1) =

1

3
G(xnk+1−1, xnk

, xnk
) < G(xnk+1−1, xnk

, xnk
)
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and from Lemma 2.1, we obtain thatα(xnk+1−1, xnk
, xnk

)β(xnk+1−1, xnk
, xnk

) ≥ 1, by defini-
tion of Suzuki generalized(α, β)-Z-contraction with respect toζ andζ(iii), we obtain

0 ≤ lim sup
k→∞

ζ(G(Txnk+1−1, Txnk−1, Txnk−1),M(xnk+1−1, xnk−1, xnk−1))

≤ lim sup
k→∞

ζ(G(xnk+1
, xnk

, xnk
),M(xnk+1−1, xnk−1, xnk−1)) < 0.

This is a contradiction. Thus{xn} is bounded.

Step 3: We will establish that{xn} is Cauchy.

Suppose thatCn = sup{G(xi, xj, xj) : i, j ≥ n}, n ∈ N. Since{xn} is bounded, we have
thatCn <∞ for all n ∈ N, as suchCn is a positive monotonically decreasing sequence which
converges. That islimn→∞Cn = C ≥ 0. Suppose thatC > 0, then by definition ofCn for
everyk ∈ N, we can findnk,mk such thatmk > nk > k and

Cn −
1

K
< G(xmk

, xnk
, xnk

) ≤ Ck,

lettingk →∞, we obtain

lim
k→∞

G(xmk
, xnk

, xnk
) = C.(2.13)

Now, observe that

G(xmk
, xnk

, xnk
) ≤ G(xmk

, xmk−1
, xmk−1

) +G(xmk−1
, xnk−1

, xnk−1
) +G(xnk−1

, xnk
, xnk

)

≤ 2G(xmk−1
, xmk

, xmk
) +G(xmk−1

, xnk−1
, xnk−1

) +G(xnk−1
, xnk

, xnk
)

and

G(xmk−1
, xnk−1

, xnk−1
) ≤ G(xmk−1

, xmk
, xmk

) +G(xmk
, xnk

, xnk
) +G(xnk

, xnk−1
, xnk−1

)

≤ G(xmk−1
, xmk

, xmk
) +G(xmk

, xnk
, xnk

) + 2G(xnk−1
, xnk

, xnk
).

Lettingk →∞ and using (2.11) and (2.13), we obtain

lim
k→∞

G(xmk−1
, xnk−1

, xnk−1
) = C.(2.14)

Also, since
1

3
G(xmk−1, Txmk−1, Txmk−1) <

1

3
G(xmk−1, xnk−1, xnk−1) < G(xmk−1, xnk−1, xnk−1)

and from Lemma 2.1, we obatin thatα(xnk+1−1, xnk
, xnk

)β(xnk+1−1, xnk
, xnk

) ≥ 1, and since
T is Suzuki generalized(α, β)-Z-contraction,
we haveG(Txmk−1

, Txnk−1, Txnk−1) ≤M(xmk−1, xnk−1, xnk−1)). It then follows that

G(xmk
, xnk

, xnk
) = G(Txmk−1, Txnk−1, Txnk−1) ≤M(xmk−1, xnk−1, xnk−1))

= max{G(xmk−1, xnk−1, xnk−1), G(xmk−1, xmk
, xmk

), G(xnk−1, xnk
, xnk

)}.
Lettingk →∞, using (2.11), (2.13) and (2.14), we have that

lim
k→∞

M(xmk−1
, xnk−1

, xnk−1
) = C.(2.15)

Using (2.13) and (2.15) we have

0 ≤ lim sup
n→∞

ζ(G(xmk
, xnk

, xnk
),M(xmk−1, xnk−1, xnk−1)) < 0.

This is a contradiction, thusC = 0. Hence,{xn} is a Cauchy sequence.
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Step 4: We will establish thatT has a fixed point.

Since{xn} is a Cauchy sequence andX is a completeG-metric space, there existsx ∈ X such
that limn→∞ xn = x.

Claim: We claim that

G(xn, x, x) <
1

3
Gb(xn, xn+1, xn+1)

or

G(xn+1, x, x) <
1

3
G(xn+1, xn+2, xn+2).

Proof of claim:

Using the fact thatG(xn+1, xn+2, xn+2) ≤ G(xn, xn+1, xn+1), we have

G(xn, xn+1, xn+1) ≤ G(xn, x, x) +G(x, xn+1, xn+1)

≤ G(xn, x, x) + 2G(xn+1, x, x)

<
1

3
G(xn, xn+1, xn+1) +

2

3
G(xn+1, xn+2, xn+2)

≤ (
1

3
+

2

3
)G(xn, xn+1, xn+1)

= G(xn, xn+1, xn+1)

The above inequality is a contradiction, thus we must have that

1

3
G(xn, xn+1, xn+1) ≤ G(xn, x, x) or

1

3
G(xn+1, xn+2, xn+2) ≤ G(xn+1, x, x).

Now, supposing that1
3
G(xn, xn+1, xn+1) ≤ G(xn, x, x) andα(xn, x, x)β(xn, x, x) ≥ 1, we

have

0 ≤ ζ(G(Txn, Tx, Tx),M(xn, x, x)).

Usingζ(ii), we obtain

G(xn+1, Tx, Tx) = G(Txn, Tx, Tx) < M(xn, x, x)

= max{G(xn, x, x), G(xn, xn+1, xn+1), G(x, Tx, Tx)}

lettingk →∞, we havelimn→∞M(xn, x, x) = G(x, Tx, Tx), it then follows that

0 ≤ lim sup
n→∞

ζ(G(TxnTx, Tx),M(xn, x, x))

< lim sup
n→∞

(M(xnx, x)−G(Txn, Tx, Tx))

= G(x, Tx, Tx)−G(x, Tx, Tx) = 0.

This is a contradiction, as such we must have thatG(x, Tx, Tx) = 0 ⇒ x = Tx. Using a
similar approach, we can also show thatT has a fixed point using

1

3
G(xn+1, xn+2, xn+2) ≤ G(xn+1, x, x).

Theorem 2.5. Suppose that the hypothesis of Theorem 2.4 holds and in addition suppose
α(x, y, y) ≥ 1 andβ(x, y, y) ≥ 1 for all x, y ∈ F (T ), whereF (T ) is the set of fixed point
of T. ThenT has a unique fixed point.
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Proof. Suppose thatx andy are fixed points ofT such thatx 6= y.
Since1

3
G(x, Tx, Tx) = 0 < G(x, y, y) andα(x, y, y)β(x, y, y) ≥ 1, we obtain from (2.9)

0 ≤ ζ(G(Tx, Ty, Ty),M(x, y, y))

= ζ(G(Tx, Ty, Ty),max{G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty)})
= ζ(G(Tx, Ty, Ty), G(x, y, y))

= ζ(G(x, y, y), G(x, y, y))

< G(x, y, y)−G(x, y, y) = 0.

This is a contradiction, as such we must have thatG(x, y, y) = 0 ⇒ x = y.

Corollary 2.6. Let (X,G) be aG-complete metric space andT : X → X be mapping such
that there exists andk ∈ (0, 1) satisfying

α(x, y, z)β(x, y, z) ≥ 1 ⇒ G(Tx, Ty, Tz) ≤ kG(x, y, z)

for all distinctx, y, z ∈ X. Suppose the following conditions hold:

(1) T is a triangular(α, β)-admissible mapping,
(2) there existsx0 ∈ X such thatα(x0, Tx0, Tx0) ≥ 1, β(x0, Tx0, Tx0) ≥ 1,
(3) if for any sequence{xn} in X with α(xn, xn+1, xn+1) ≥ 1 andβ(xn, xn+1, xn+1) ≥ 1

for all n ≥ 0 andxn → x asn→∞, thenα(xn, x, x) ≥ 1. andβ(xn, x, x) ≥ 1.

ThenT has a fixed point.

Corollary 2.7. Let (X,G) be aG-complete metric space andT : X → X be mapping such
that there exists andk ∈ (0, 1) satisfying

1

3
G(x, Tx, Tx) ≤ G(x, y, z) ⇒ G(Tx, Ty, Tz) ≤ kM(x, y, z)

for all distinctx, y, z ∈ X, whereM(x, y, z) = max{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Tz)}.
ThenT has a unique fixed point.

3. APPLICATION

In this section, we present an application of Corollary 2.7 to guarantee the existence and unique-
ness problem of the solution to an integral equation of the form:

x(t) = f(t) +

∫ 1

0

H(t, s, u(s))ds, t ∈ [0, 1].(3.1)

Let X = C([0, 1]) be the space of real continuous function defined on[0, 1]. It is well-known
thatC([0, 1]) endowed with theG-metric

G(x, y, z) = sup
t∈[0,1]

|x(t)− y(t)|+ sup
t∈[0,1]

|y(t)− z(t)|+ sup
t∈[0,1]

|z(t)− x(t)|

is a completeG-metric space. DefineT : X → X by

Tx(t) = f(t) +

∫ 1

0

H(t, s, x(s))ds, t ∈ [0, 1].

Theorem 3.1.Suppose that the following hypothesis hold:

(1) H : [0, 1]× [0, 1]× R → R andf : R → R are continuous,

AJMAA, Vol. 16, No. 2, Art. 15, pp. 1-17, 2019 AJMAA

http://ajmaa.org


16 K. A FASSINOU AND O. K. NARAIN

(2) there existsK : [0, 1] × [0, 1] → [0,∞) such that1
3
G(x, Tx, Tx) ≤ G(x, y, y) implies

that
|H(t, s, u)−H(t, s, v)| ≤ K(t, s)|u− v|

for all distinctx, y ∈ X, t, s ∈ [0, 1] andu, v ∈ R,
(3) supt∈[0,1]

∫ 1

0
K(t, s)ds < τ, whereτ ∈ (0, 1).

Then the integral equation(3.1)has a solutionx ∈ X.

Proof. Forx, y ∈ X, we have

G(Tx, Ty, Ty) = 2 sup
t∈[0,1]

|Tx(t)− Ty(t)|

= 2 sup
t∈[0,1]

∣∣∣∣ ∫ 1

0

H(t, s, x(s))−H(t, s, y(s))ds

∣∣∣∣
≤ 2 sup

t∈[0,1]

∫ 1

0

|H(t, s, x(s))−H(t, s, y(s))|ds

≤ 2 sup
t∈[0,1]

∫ 1

0

K(t, s)|x(s)− y(s)|ds

≤ 2 sup
t∈[0,1]

|x(t)− y(t)| sup
t∈[0,1]

∫ 1

0

K(t, s)ds

≤ τG(x, y, y)

≤ G(x, y, y)

≤M(x, y, y).

Thus, Corollary 2.7 is applicable toT which guarantees the existence and the uniqueness of the
fixed pointx ∈ X. Thus,x is the unique solution of the integral equation 3.1.

4. CONCLUSION

In this paper, we introduced the notion of(α, β)-Z-contraction and Suzuki generalized(α, β)-
Z-contraction in the framework of completeG-metric space which improved, generalized and
unified various comparable results [9, 10, 11] in the existing literature. In addition, we presented
some examples to establish that this generalization was an important one. Finally, we applied
our result to show the existence and uniqueness of the solution of an integral equation.
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