


Paper's Title:
Hyponormal and KQuasiHyponormal Operators On SemiHilbertian Spaces
Author(s):
Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali
Mathematics Department,
College of Science,
Aljouf University,
Aljouf 2014,
Saudi Arabia.
Email:
sididahmed@ju.edu.sa
Mathematics Department, Faculty of
Science,
Hassiba Benbouali, University of Chlef,
B.P. 151 Hay Essalem, Chlef 02000,
Algeria.
Email:
benali4848@gmail.com
Abstract:
Let H be a Hilbert space and let A be a positive bounded operator on H. The semiinner product < uv>_{A}:=<Auv>, u,v ∈ H induces a seminorm  ._{A} on H. This makes H into a semiHilbertian space. In this paper we introduce the notions of hyponormalities and kquasihyponormalities for operators on semi Hilbertian space (H,._{A}), based on the works that studied normal, isometry, unitary and partial isometries operators in these spaces. Also, we generalize some results which are already known for hyponormal and quasihyponormal operators. An operator T ∈ B_{A} (H) is said to be (A, k)quasihyponormal if
Paper's Title:
ψ(m,q)Isometric Mappings on Metric Spaces
Author(s):
Sid Ahmed Ould Beinane, Sidi Hamidou Jah and Sid Ahmed Ould Ahmed Mahmoud
Mathematical Analysis and Applications,
Mathematics Department, College of Science,
Jouf University,
Sakaka P.O.Box 2014,
Saudi Arabia.
Email: beinane06@gmail.com
Department of Mathematics, College of
Science Qassim University,
P.O. Box 6640, Buraydah 51452,
Saudi Arabia.
Email: jahsiidi@yahoo.fr
Mathematical Analysis and Applications,
Mathematics Department, College of Science, Jouf University,
Sakaka P.O.Box 2014,
Saudi Arabia.
Email: sidahmed@ju.edu.sa,
sidahmed.sidha@gmail.com
Abstract:
The concept of (m,p)isometric operators on Banach space was extended to
(m,q)isometric mappings on general metric spaces in [6].
This paper is devoted to define the concept of
ψ(m, q)isometric, which is the
extension of A(m, p)isometric operators on Banach spaces introduced in [10].
Let T,ψ: (E,d) > (E, d) be two mappings.
For some positive integer m and q ∈ (0,∞).
T is said to be an ψ(m,q)isometry,
if for all y,z ∈ E,
Paper's Title:
Robust Error Analysis of Solutions to Nonlinear Volterra Integral Equation in L^{p} Spaces
Author(s):
Hamid Baghani, Javad FarokhiOstad and Omid Baghani
Department of Mathematics, Faculty of
Mathematics,
University of Sistan and Baluchestan, P.O. Box 98135674, Zahedan,
Iran.
Email:
h.baghani@gmail.com
Department of Mathematics, Faculty of
Basic Sciences,
Birjand University of Technology, Birjand,
Iran.
Email: j.farrokhi@birjandut.ac.ir
Department of Mathematics and Computer
Sciences,
Hakim Sabzevari University, P.O. Box 397, Sabzevar,
Iran.
Email:
o.baghani@gmail.com
Abstract:
In this paper, we propose a novel strategy for proving an important inequality for a contraction integral equations. The obtained inequality allows us to express our iterative algorithm using a "for loop" rather than a "while loop". The main tool used in this paper is the fixed point theorem in the Lebesgue space. Also, a numerical example shows the efficiency and the accuracy of the proposed scheme.
Paper's Title:
Reduced Generalized Combination Synchronization Between Two nDimensional IntegerOrder Hyperchaotic Systems and One mDimensional FractionalOrder Chaotic System
Author(s):
Smail Kaouache, Mohammed Salah Abdelouahab and Rabah Bououden
Laboratory of Mathematics and their
interactions,
Abdelhafid Boussouf University Center, Mila.
Algeria
Email: smailkaouache@gmail.com,
medsalah3@yahoo.fr,
rabouden@yahoo.fr
Abstract:
This paper is devoted to investigate the problem of reduced generalized combination synchronization (RGCS) between two ndimensional integerorder hyperchaotic drive systems and one mdimensional fractionalorder chaotic response system. According to the stability theorem of fractionalorder linear system, an active mode controller is proposed to accomplish this end. Moreover, the proposed synchronization scheme is applied to synchronize three different chaotic systems, which are the Danca hyperchaotic system, the modified hyperchaotic Rossler system, and the fractionalorder RabinovichFabrikant chaotic system. Finally, numerical results are presented to fit our theoretical analysis.
Search and serve lasted 0 second(s).