|
||||||||||||
|
if(isset($title)){?> }?> if(isset($author)){?> }?> |
||||||||||||
Paper's Title:
Para-chaotic Tuples of Operators
Author(s):
Bahmann Yousefi and Javad Izadi
Department of Mathematics,
Payame Noor University,
P.O. Box 19395-3697, Tehran,
Iran
b_yousefi@pnu.ac.ir
javadie2003@yahoo.com
Abstract:
In this paper, we introduce para-chaotic tuples of operators and we give some relations between para-chaoticity and Hypercyclicity Criterion for a tuple of operators.
Paper's Title:
On the Hyers-Ulam Stability of Homomorphisms and Lie Derivations
Author(s):
Javad Izadi and Bahmann Yousefi
Department of Mathematics, Payame Noor
University,
P.O. Box: 19395-3697, Tehran,
Iran.
E-mail: javadie2003@yahoo.com,
b_yousefi@pnu.ac.ir
Abstract:
Let A be a Lie Banach*-algebra. For each elements (a, b) and (c, d) in A2:= A * A, by definitions
(a, b) (c, d)= (ac, bd),
|(a, b)|= |a|+ |b|,
(a, b)*= (a*, b*),
A2 can be considered as a Banach*-algebra. This Banach*-algebra is called a Lie Banach*-algebra whenever it is equipped with the following definitions of Lie product:
for all a, b, c, d in A. Also, if A is a Lie Banach*-algebra, then D: A2→A2 satisfying
D ([ (a, b), (c, d)])= [ D (a, b), (c, d)]+ [(a, b), D (c, d)]
for all $a, b, c, d∈A, is a Lie derivation on A2. Furthermore, if A is a Lie Banach*-algebra, then D is called a Lie* derivation on A2 whenever D is a Lie derivation with D (a, b)*= D (a*, b*) for all a, b∈A. In this paper, we investigate the Hyers-Ulam stability of Lie Banach*-algebra homomorphisms and Lie* derivations on the Banach*-algebra A2.
Paper's Title:
New Jacobi Elliptic Function Wave Solutions for Conformable Fractional Benjamin-Bona-Mahoney-Burgers Equation
Author(s):
Guechi Meriem, Guechi Fairouz
Department of Mathematics,
Faculty of Sciences,
LMFN, University Sétif1,
Algeria.
E-mail: guechi.meriem87@gmail.com
fairouz.chegaar@univ-setif.dz
Abstract:
In this paper, Jacobi elliptic function expansion method is applied to solve fractional Benjamin-Bona-Mahoney-Burgers equation with conformable derivative and power law nonlinearity. This method is straightforward, concise, effective and can be used for many other nonlinear evolution equations. Numerical solutions are given to illustrate the accuracy and validity of this method.
Search and serve lasted 1 second(s).