


Paper's Title:
On an extension of Edwards's double integral with applications
Author(s):
I. Kim, S. Jun, Y. Vyas and A. K. Rathie
Department of Mathematics Education,
Wonkwang University,
Iksan, 570749,
Republic of Korea.
General Education Institute,
Konkuk University,
Chungju 380701,
Republic of Korea.
Department of Mathematics, School of
Engineering,
Sir Padampat Singhania University,
Bhatewar, Udaipur, 313601, Rajasthan State,
India.
Department of Mathematics,
Vedant College of Engineering and Technology,
(Rajasthan Technical University),
Bundi323021, Rajasthan,
India.
Email: iki@wku.ac.kr
sjun@kku.ac.kr
yashoverdhan.vyas@spsu.ac.in
arjunkumarrathie@gmail.com
Abstract:
The aim of this note is to provide an extension of the well known and useful Edwards's double integral. As an application, new class of twelve double integrals involving hypergeometric function have been evaluated in terms of gamma function. The results are established with the help of classical summation theorems for the series _{3}F_{2} due to Watson, Dixon and Whipple. Several new and interesting integrals have also been obtained from our main findings.
Paper's Title:
A Review on Minimally Supported Frequency Wavelets
Author(s):
K Pallavi^{1}, M C Lineesh^{1}, A Noufal^{2}
^{1}Department of
Mathematics,
National Institute of Technology Calicut,
Kerala 673601,
India.
Email:
pavikrishnakumar@gmail.com
lineesh@nitc.ac.in
^{2}Department of Mathematics,
Cochin University of Science and Technology,
Kerala 682022,
India.
Email: noufal@cusat.ac.in
Abstract:
This paper provides a review on Minimally Supported Frequency (MSF) wavelets that includes the construction and characterization of MSF wavelets. The characterization of MSF wavelets induced from an MRA is discussed and the nature of the lowpass filter associated with it is explained. The concept of wavelet set and dimension function is introduced to study this class of wavelets. Along with MSF wavelets, selementary wavelets and unimodular wavelets are also considered due to the similarity in definitions. Examples and illustrations are provided for more clarity.
Paper's Title:
Evaluation of a New Class of Double Integrals Involving Generalized Hypergeometric Function _{4}F_{3}
Author(s):
Joohyung Kim, Insuk Kim and Harsh V. Harsh
Department of Mathematics Education,
Wonkwang University, Iksan, 570749,
Korea.
Email: joohyung@wku.ac.kr
Department of Mathematics Education,
Wonkwang University, Iksan, 570749,
Korea.
Email: iki@wku.ac.kr
Department of Mathematics, Amity School
of Eng. and Tech.,
Amity University Rajasthan
NH11C, Jaipur303002, Rajasthan,
India.
Email: harshvardhanharsh@gmail.com
Abstract:
Very recently, Kim evaluated some double integrals involving a generalized hypergeometric function _{3}F_{2} with the help of generalization of Edwards's wellknown double integral due to Kim, et al. and generalized classical Watson's summation theorem obtained earlier by Lavoie, et al. In this research paper we evaluate one hundred double integrals involving generalized hypergeometric function _{4}F_{3} in the form of four master formulas (25 each) viz. in the most general form for any integer. Some interesting results have also be obtained as special cases of our main findings.
Search and serve lasted 0 second(s).