|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Some criteria for Subspace-hypercyclicity of C0-semigroups
Author(s):
Mansooreh Moosapoor
Department of Mathematics,
Farhangian University, Tehran,
Iran.
E-mail: m.mosapour@cfu.ac.ir
mosapor110@gmail.com
Abstract:
We research subspace-hypercyclic C0-semigroups in this paper. We present various types of subspace-hypercyclicity criteria for C0-semigroups. Some of them are stronger than the criteria introduced before. Also, we state that if a C0-semigroup (Tt}t≥ 0 satisfies in any of them, then (Tt⊕Tt}t≥ 0 is subspace-hypercyclic.
Paper's Title:
On Subspace-Supercyclic Operators
Author(s):
Mansooreh Moosapoor
Assistant Professor,
Department of Mathematics,
Farhangian University, Tehran,
Iran.
E-mail: mosapor110@gmail.com
m.mosapour@cfu.ac.ir
Abstract:
In this paper, we prove that supercyclic operators are subspace-supercyclic and by this we give a positive answer to a question posed in ( L. Zhang, Z. H. Zhou, Notes about subspace-supercyclic operators, Ann. Funct. Anal., 6 (2015), pp. 60--68). We give examples of subspace-supercyclic operators that are not subspace-hypercyclic. We state that if T is an invertible supercyclic operator then Tn and T-n is subspace-supercyclic for any positive integer n. We give two subspace-supercyclicity criteria. Surprisingly, we show that subspace-supercyclic operators exist on finite-dimensional spaces.
Search and serve lasted 0 second(s).