|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Residual-Based A Posteriori Error Estimates For A Conforming Mixed Finite Element Discretization of the Monge-Ampere Equation
Author(s):
J. Adetola, K. W. Houedanou and B. Ahounou
Institut de Mathematiques et de Sciences
Physiques (IMSP),
Universite d'Abomey-Calavi
E-mail: adetolajamal58@yahoo.com
Departement de Mathematiques,
Faculte des Sciences et Techniques (FAST),
Universite d'Abomey-Calavi
E-mail: khouedanou@yahoo.fr
Departement de Mathematiques,
Faculte des Sciences et Techniques (FAST),
Universite d'Abomey-Calavi
E-mail: bahounou@yahoo.fr
Abstract:
In this paper we develop a new a posteriori error analysis for the Monge-Ampere equation approximated by conforming finite element method on isotropic meshes in R2. The approach utilizes a slight variant of the mixed discretization proposed by Gerard Awanou and Hengguang Li in [4]. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient.
Paper's Title:
Existence of Solution of Differential and Riemann-Liouville Equation Via Fixed Point Approach in Complex Valued b-Metric Spaces
Author(s):
K. Afassinou, A. A. Mebawondu, H. A. Abass and O. K. Narain
Department of Science Access,
University of Zululand, KwaDlangezwa,
South Africa.
E-mail: komia@aims.ac.za
DST-NRF Centre of Excellence in
Mathematical and Statistical Sciences (CoE-MaSS),
Johannesburg,
South Africa.
E-mail: dele@aims.ac.za
DST-NRF Centre of Excellence in
Mathematical and Statistical Sciences (CoE-MaSS),
Johannesburg,
South Africa.
E-mail: hammedabass548@gmail.com
School of Mathematics, Statistics and
Computer Science,
University of KwaZulu-Natal, Durban,
South Africa.
E-mail: naraino@ukzn.ac.za
Abstract:
In this paper, we establish some fixed point and common fixed point results for a new type of generalized contractive mapping using the notion of C-class function in the framework of complex valued b-metric spaces. As an application, we establish the existence and uniqueness of a solution for Riemann-Liouville integral and ordinary differential equation in the framework of a complete complex valued b-metric spaces. The obtained results generalize and improve some fixed point results in the literature.
Paper's Title:
Fuzzy Ideal Congruences of ADL's
Author(s):
G. Prakasam Babu, K. Ramanuja Rao, G. Srikanya and Ch. Santhi Sundar Raj
1,4Department of Engineering
Mathematics,
Andhra University,
Visakhapatnam-A.P,
India.
E-mail: prakash.g368@gmail.com,
santhisundarraj@yahoo.com
2Department of Mathematics,
Solomon Islands National University,
Panatina Campus, Honiara,
Solomon Islands.
E-mail: ramanuja.kotti@sinu.edu.sb
3Department of Mathematics,
Raghu Engineering College (A),
Visakhapatnam-A.P.,
India.
E-mail:
srikanya.gonnabhaktula@raghuenggcollege.in
Abstract:
The concept of fuzzy congruence of an ADL is introduced. Established a correspondence between fuzzy ideals and fuzzy congruences of an ADL and obtained an equivalent condition for an ADL with a maximal element is a Boolean algebra.
Paper's Title:
On the Biharmonic Equation with Nonlinear Boundary Integral Conditions
Author(s):
R. Hamdouche and H. Saker
L.M.A. Department of Mathematics, Faculty
of Sciences,
University of Badji Mokhtar,
P.O.Box 12. Annaba 23000,
Algeria.
E-mail: h_saker@yahoo.fr,
hmdch.rahma16@gmail.com
Abstract:
In the present work, we deal with the biharmonic problems in a bounded domain in the plane with the nonlinear boundary integral conditions. After applying the Boundary integral method, a system of nonlinear boundary integral equations is obtained. The result show that when the nonlinearity satisfies some conditions lead the existence and uniqueness of the solution.
Paper's Title:
A Low Order Least-Squares Nonconforming Finite Element Method for Steady Magnetohydrodynamic Equations
Author(s):
Z. Yu, D. Shi and H. Zhu
College of Science,
Zhongyuan
University of Technology,
Zhengzhou 450007,
China.
E-mail:
5772@zut.edu.cn
School of Mathematics and Statistics,
Zhengzhou University,
Zhengzhou 450001,
China.
E-mail:
shi_dy@126.com
Mathematics Department,
University of Southern Mississippi,
Hattiesburg MS, 39406,
U.S.A
E-mail:
huiqing.zhu@usm.edu
Abstract:
A low order least-squares nonconforming finite element (NFE) method is proposed for magnetohydrodynamic equations with EQ1rot element and zero-order Raviart-Thomas element. Based on the above element's typical interpolations properties, the existence and uniqueness of the approximate solutions are proved and the optimal order error estimates for the corresponding variables are derived.
Search and serve lasted 1 second(s).