|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper Title:
Some Homogeneous Cyclic Inequalities of Three Variables of Degree Three and Four
Author(s):
TETSUYA ANDO
Department of Mathematics and Informatics,
Chiba University, Chiba 263-8522, JAPAN
ando@math.s.chiba-u.ac.jp
Abstract:
We shall show that the three variable cubic inequality
t2 (a3+b3+c3) + (t4-2t)(ab2+bc2+ca2)
≥ (2t3-1)(a2b+b2c+c2a)
+ (3t4-6t3+3t2-6t+3)abc
holds for non-negative a, b, c, and for any real number t.
We also show some similar three variable cyclic quartic inequalities.
Full Text PDF: