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ABSTRACT. We shall show that the three variable cubic inequality
t2(a® + % + &) + (t* — 2t)(ab® + b* + ca®)
> (2t3 — 1)(a®b + b*c + c*a) + (3t* — 61> + 3t> — 6t + 3)abe

holds for non-negative, b, ¢, and for any real number We also show some similar three
variable cyclic quartic inequalities.
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2 TETSUYA ANDO

1. INTRODUCTION
We denote cyclic or symmetric polynomials of three variables by
Sijk = ab +bvidak + ciajbk, Siji=8ij0, Si:=Si00= a+ b+
Tijk = Sijre+ Sjin, Tij:=Tijo=Si;+S5 Ti:=Tipo=25,
1 1

U:= 351,1,1 = 6 1,1,1 = abc.

About symmetric polynomials, it is well known that Muirhead’s inequalities
283 =T3 > T, > T 1,1 = 6U,
28, =Ty > T35, > Ty > T51, = 2US5,
hold for non-negative real numbeds b, c. Schur’s inequality and Cirtoaje’s inequality ([3,
p.73])
(1.1) Ss+3U > Ty, Si+ (2 +2t)S00 > (t+ 1)Ts, + (2 — 1US,
are rather non-trivial, hereis any real number. Any of the above quartic inequalities except
T3, > T, 5 hold even if some of, b, c are negative. About cyclic polynomials, similar inequal-
ities
S3 > S91 2> 81110 =3U, S4>8312>511=US5, Si1>52>51,

hold for non-negative:, b, c. Here, S, > S5; andS, > S,5 > Sy1, are true for any real
a, b, c. ButS;; > S,, does not hold even i, b, c are non-negative. Schur type inequality
S3 4+ 3U > 25, ; does not also hold. But an weaker inequality

3
4 .
(1.2) Soy < \/?_5’3 + (3 — V4)U < 0.529134S; + 0.470866U

holds for non-negative, b, c. This will be proved as a corollary of the following Theorem.

Theorem 1.1. For non-negative real numbers b, c andt, the following inequality holds:
(1.3) 1255 + (t* — 2t)So1 > (2t — 1)S19 + (3t* — 61 + 3t* — 6t + 3)U.
The equality holds ifand onlyif = b = cora:b:c=1t:0:1orany cyclic permutation
thereof.

This inequality will be proved in Sectlﬂ 2. Note that wher= — we obtain ), and

2
1+vV2+vV2vV2 -1
2

whent = = 1.88320350591352586416 - - -, we obtain

Ss+ aSy1 > (a+1)S;,

162 3—1 .
herea = \/_; = 2.48443533176585687519 - - - which is a root ofa* + 203 —

5a% — 6 — 23 = 0.

Next, we consider quartic cyclic inequalities. It is well known the inequalities
(1.4) Sy+S13>2831, Si+ (3t —1)S99 > 3tSs; + 3t(t — 1)US,
hold for any real numbers, a, b, c. Recently, Cirtoaje proved very nice inequality which

includes[(1.1L) and (1.4).

AJMAA Vol. 7, No. 2, Art. 11, pp. 1-14, 2011 AJMAA


http://ajmaa.org
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Theorem 1.2. ([4, Theorem 2.1].)Letp, q, r be any real numbers. The cyclic inequality
Sy+1Se+(p+qg—r—1US >pSs1+qSis
holds for any real numbers, b, c if and only if
3(1+7)>p*+pg+q°.

In Sectior] B, we shall prove the following.

Theorem 1.3.(1) For any real numbers, b, c andt such thatt| > 2, the following inequality
holds:

t2 48 t(t — 2
+8,,4 L2

Here, the equality holds if and only if
2(a® +b* + ¢*) = t(ab+ be + ca).

(1.5) Sy + USy > tT51.

(2) For any non-negative real numbersb, ¢ andt, the following inequality holds:
(1.6) 2638, > 12(3 — 1) S35 + (3t* — 1)Sy 5+ (1 — 3t + 263 — 3t* +- 1)U S,.

The equality holds ifand onlyif = b =cora : b: ¢ =1t :0:1orany cyclic permutation
thereof.

As a special case .6), wher= 1/v/3 we obain

4v 4v

Whent = 0.60275592558114181526 - - - is a root oft® — 3t* 4 2¢3 — 3t2 + 1 = 0, we obtain
Sy + B513 > (B+1)Ss,,
here = 1.37907443362539958016 - - - which is a root of
435 +123° — 483" — 116> + 243 + 843 + 229 = 0.

Note that Theorem 1.2 does not included in Theofem 1.3, and Thdorém 1.3(1) does not
conflict to Theorem 1]2:

Sy4 (p* —1)S90 +p(2 — p)US, > pTs,.

2. PROOF OF THEOREM [1.]
In this section, we shall show that
(1.2) t2(a® + 0> + ) + (t* — 2t)(ab® + bc? + ca?)
> (2t — 1)(a®b + b?c + c*a) + (3t* — 6t° + 3t* — 6t + 3)abe.

Letw :=a/c,v:=0b/c, and

Sy ath+be+cfa w40t +u

TSy B+ +3 Wi+l

S ab® + bc? + ca? B wv? + v + u?

TSy B+ +3 Wi+l

U abc UV

2= — = = .
Sy ad+bP+c w+vd+1
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Eliminateu, v from z, y, z, we obtain the relation
(2.1) 2343 +923 —6ayz —ay + 3224+ 2=0,

herez > 0,y > 0, z > 0. (2.1) determines the rational algebraic surfacas the following
figure.

(0,0,1/3) (0,1,1/3)
(1,1,1/3)
(0,0,0) ;{#/‘
(1,0,0) (1,1,0)

Let C' be the intersection of and the(z, y)-plane.C' is the rational cubic curve defined by
2yt —ay=0.

The part ofC'in z > 0, y > 0 is a convex closed curve. Note that any pdaphon C can be

represented as

u u?

x:u3+1::f(u), y:u3+1::g(u) (u > 0).

S have a rational double point of the typle at P = (1, 1, 1/3) as the unique singularity. In
fact, let

1
X=1—z, Y:=1-y, Z::§—x.

Then [2.1) is equivalent to
3X?4+3Y?+122° —-3XY —6YZ —6XZ — X° —Y® - 92° + 6XYZ = 0.
With parameters! := X/Z andB := Y/Z, we can represenX, Y, Z as

e 3(4A —2A% —2AB + A® — A’B + AB?)

B 9—6AB+ A3 + B? ’
3(4B —2B* —2AB + A’B — AB* + B?)

9—-6AB + A3+ B3 ’
3(4—2A—-2B+ A% + B* — AB)
9—-6AB+ A3+ B3 '

This means that every line passing thougmeet again witht' at only one point. We shall call
such surface to be a 'concave cone’.

Let @ := (f(u), g(u)) be a point onC, and letR? be the first quadrant dfr, y, z)-space
defined byr > 0,y > 0, z > 0. Let H be the plane which tangentsdbat (), and which passes

Yy —

7 —
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throughP. SincePQ NS = {P, Q}, and since’' is a convex closed curve, we conclude that
HNSNR} ={P, Q}. The equation of{ is

x Y z 1

0 — 1 1 ;1
B f(u) g(u) 0 1
f)+ 4 f(w) g(w) + fg(uw) 0 1

—u? — (u* — 2u)x + (2u® — 1)y + (3u* — 6u® + 3u? — 6u+ 3)z
3(ud +1)? '
The numerator of the above givés (1.2), after we observe which sifetbére isS.

3. PROOF OF THEOREM

Proof of [1.%).Leta, b, c be any real numbers,:= a/c, v := b/c, and let

Ty1 vwo+vPu+uwd+0d+utov
T S, ut + vt 41 =i p(u,v),
Soo Ut 4 u? +0?
= S, witotrl = q(u,v),
L US,  wv(u+v+1)
S, ut +vt+1
These parametrization determines a rational quadric sufatefined by
(x4 2)* — 2y + 1)(y + 22) = 0.

Note thatS is an elliptic cone with vertex—1/4, —1/2,1/4).

=:1(u,v).

(0,1,1)

(0,0,1)

(2,1,1)

0,0,0 %g

(2,0,0)

(2,1,0)

The above figure is the part ¢f determined by) < v < 1,0 < v < 1. This looks like a
triangular sail of a yacht. Note that since the parametrization is not one to one, the) can
move limited area of.

Now we calculate the tangent planesfLet

Ag = (u+v+uw)?

Ay = 2(u+ v+ ww)(1 + u® +0v?)

Ay =1+ 4u® + duv + 40° + 4o + duv® + ut + 4u?0? + ot
A =21+ v* + )1 —u— v +u? —uv +v?).
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Since
x Y Z 1
p(u,v) q(u, v) r(u, v) 1
p(u,0) + 2p(u,v) qlu,0) + Lalu,v) r(u,0) + Lr(u) 1
p(u,0) + 2p(u,v)  qlu,0) + Salu,v) r(u,w) + 2r(uo) 1

(1+ut+01)3
the tangent plané/ of S at (p(u,v), ¢(u, v), r(u,v)) is given by
(31) AO - All’ + Agy + A3Z = 0.

Ay (AN Ay (AN A
ae=() e =)

we can represert (3.1) by the parameter

By the way, since

A 201+ uP 407 2(a® + 0P+ )

ti=—= =
A u~+ v+ uv ab + bc + ca

as

t?+38 2 — 2t
(3.2) Hol—tr+ Iy+ =0,

Sinc S is a cone S is contained in a half space whose boundar¥f iBut since

21+ u? +v*) = 2u+v+uw) = (u—v)* + (u— 1)+ (v —1)* >0,

t can only take any real numbers such thiat> 2. Thus we complete the prodf.
Note thatHd does not pass throudh, 1, 1), unlesg = 2.

Proof of [1.6). We may assume that b, c be real numbers. Let := a/c, v := b/c, and let

Sgyl u3v + 7)3 +u

S4 - U4—|—U4+1 :Zp(U,U)7
Sis wdt+ut+w (1, v)
= = =:q(u,v
Sy ut + vt +1 7\ v,
Us 1
2=t = wlutvtl) =:r(u,v).

S, wrtvi+1l
These parametrization determines a rational quadric suffatedined by

ot 4yt + 320 + 2027 + Ay + 40?2 — a2 — day2? — 4y2B
+ 523 — a2 — Ay + 2%z —dayz + P —ay —xz —yz + 422+ 2 = 0.
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(0,1,1)
(0,0,1)
(1,1,1)
(0,0,0) /|
7]
Co
(1,0,0) (1,1,0)

S has a rational double point & = (1, 1, 1). Let C be the intersection of and the(z,
y)-plane.C is a rational curve with a parametrization
3
Uu Uu
(33) T = U4 + 1 - p()(u)? y - u4 + 1
The partofC' inz > 0,y > 0 is a convex closed curve.
Let ) be the point orC' defined by|[(3.8), and let/ be the tangent plane @f at () which

passes througFk. The equation of{ is obtained by

=: qo(u).

z Y z 1

0 1 1 11
o Po(u) qo(u) 0 1
po(u) + 2=po(u)  go(u) + #go(u) 0 1

uw?(3 —ul)r — (1 = 3ut)y + (1 — 3u® + 2u® — 3u* + u®)z — 2u3
(14 u*)? '

If we show thatd N S NR% = {P, Q}, we know thatS must be contained in the half space
defined by

w?(3 — ut)r — (1 —3ub)y + (1 — 3u® + 2u® — 3u* +u®)z — 2u® < 0.

Then we obtain(1]6).

Let's show thatd N S NR3 = {P, Q}, Note that the intersection numbBr) andS at P is
not less thar2. SincesS is quartic, and sinc# is closed surface, we have) NS = {P, P, Q,
@'}, hereQ)' is the third intersection aP@ andS. It is enough to show that thecoordinate of
Q' is not positive.

Assume that the-coordinate ofY)’ is positive. Then, we can find a poiit’ € S N R?% such
that the linePQ)” tangents tab.

Let H be the tangent plane &fatQ” = (p(u,v), ¢(u,v), r(u,v)). Let

Ay = —2ut? + b + Po? — utod — udut + uod 4+ w®
+ udv — 2uto® + 3w — 20t + W’
— u'v + 3uv? + 3u?0® — w?
—2ut — v — 2u0? — w® — 20* + v + w? + w,
Ay =300 — " — u" — ubv + W0 + 2ute® — 3udvt + uP® — w®
+ P — 2ut? — 200t + wo® — 3utv + 2uvt + 30°

+ 2ulv — 2u*v? — 3uv® + 3u® + v?u + w? — v — v,
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Ay = —uv+ 3uP0® — ubv + uPo? — 3uted + 2630t + u® — wn® + 07
+ P — 2ut? — 200t + wo® + 3P + 2utv — 3wt
— 3udv — 2u%0? 4 2uv® + uPv 4+ w? + 30 — uw — u,

Az = u® — u v 4+ u®0? — P — 2utot — B0 + w0 — w4+ 08
—u” + ut® + 20 + Bt + 2u® — o7
+ub — 9utv? — 9uo?t + 8ulv? + 0°
—u® + utv + 8uP? + 8utvP + wt — v
—2ut + wdv — 9uP0? + wv® — 20*

— =+l 2w+t —u—v+1.

5

Since

x Y z 1

p(u, v) q(u,v) r(u, v 1
plu,v) + Zp(u,v)  q(u,v) + Zq(u,v)  rlu,v) + Zr(u,v) 1
plu,v) + Zplu,v)  q(u,v) + 2q(u,v)  rlu,v) + Lr(u,v) 1

l+u+wv
- m(flg + Az + Agy + Asz),

the equation of the tangent planeatQ = (p(u, v), ¢(u, v), (u, v)) is
(3.4) Ao+ A1z + Asy + Aszz = 0.
SinceH passes througk = (1, 1, 1), we have a relation

Ag+ A1+ A + Az

=(14+u+v)(1—u—v+u®+v°—uv)?

2043w+ ud —u?

X(l—u—v—u v —w?+v%) = 0.
Note that
21 —u—v+u+0v> —w) = (u—v)* +(u—1)*+ (v —1)* >0,
if Q" #P.Ifu+v+1=0,thenQ” = (-1/2,—1/2,0). Thus we consider a relation
1—u—v—u*—v*+3uw+u —v?v —w? +0* = 0.

This equation determines a rational cubic cuivi@ (u, v)-plane with a singularity afl, 1).
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1 * Singularity (1,1)

Lett := (1 —v)/(1 — ). ThenI" have a parametrization
t2(t — 2) 1—2t

3.5 _ __1-2
(35) YTl T ey YT 1 —et s

Thus we see that

{(u,v) €T |u>0,v>0}={(1,1)}.
Note that(u, v) = (1, 1), if £ = —1 andt # —1. Thusu < 0 orv < 0, andr(u, v) < 0. This
is a contradictiong

By the above observation, we obtain another inequality. Assumeuthatc are any real
numbers. Substituté (3.5) far (3.4), and multiply

(1 =)0 +1)3%1 —t+1*)73
X (2 — 12t + 18% + 20t° — 51¢* — 48¢° + 144¢°
— 4817 — 5145 4 200° + 18110 — 1261 4 212) 7,
then we obtain
(1 —6t+6t> + 8% — 9" + %) + (1 — 9% + 8* + 6t* — 6t° + %)y
= (1 -3t —3t> + 11¢> — 3t* — 3t° + %)z + (1 — 3t + 5t> — 3t° + 19).
SinceS is contained in a half space divided B#, thus we have the following:
(1—=3t+5t> = 3t° +19)S, + (1 = 3t +£*)(1 — 3 + *)US,
> (1 — 6t + 6t + 8> — 9t* +1°) 83,
+ (1 — 9% + 8% + 6t* — 6t° +1°) 9 5.
But this is a special case of Theorgm|1.2.
It is haeder to obtain inequalities abdit Ss 5, Ss1 andsS; 3.
Leta, b, c be any real numbers,:= a/c, v := b/c, and let
S5 wv+vP+u

54 - u4+/U4+1 ::p(U,U),
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_ Siz wd +ud + v
S, ut4vt+l
Sop uPP 4t 40P
TSy uwt4ut4l

= Q<u7v)7

=:r(u,v).

This determines a rational quartic surfei€as the following figure.

(0,0,1) (0,1,1)

(1,0,1)

(1,1,1)

(0,0,0)

(1,0,0) (1,1,0)

S has an unique singular point Bt= (1, 1, 1). Note thatS N R? is not concave cone. Thus
we can not use the above method.

Anyway, we calculate the equation of the tangent plahef S at ) = (p(u, v), q(u,, v),
r(u, v)). Let
2

4 6

—u® + u?v
—uPv? — 2ut® — 2P0t — ud
+ub — wPv + bute? + suot — uw® + 08

—u® = 2utv — 2uv* — v° + ut — 20 + HuPe® — 2ud + o

By = ubv? — w0 + utv

—u3—u20—uv2—v3+u2+v2,

By = —2(u®+v* + 1)(u5v —utv? — utv — P + PP —ut 400
+ udv + 3uv? — uv® — ot — P+ w? —u? — w4+,
By = —2(u® +v* + 1)( — v*v" + w® + v’ — u'v + u*v® — uPv® — uv

—ut — wPv + 3u0? + uw + vt — w? — uv — v F o,

B3 = u® —uv + ubv? — udv? — 2utt — uPd + w0 — w” + V8
—u’ + 2ubv 4+ ut? + vt 4+ 2u® — o7
+ u® — 9ut? + 8uv? — 9uut 4 0°
—u® + utv + 8udv? + 8uPvd + wvt — 0P
—2ut + wiv — 9P + w — 20t

—w =+t 2uw+ vt —u—v+1.
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Since
x Y z 1
p(u,v) q(u,v) r(u,v) 1
p(u,v) + Zp(u,v)  qu,v) + 2=q(u,v)  r(u,0) + Zr(u,v) 1
p(u,v) + Zplu,v)  qlu,v) + Zq(u,0)  r(u,v) + For(u,v) 1

6]
1+u+w
= —(1 _|_u4—|—’()4)3 (BO—FBlw—i-BQy—FBgZ),

H is defined by
We assume thatl passes througk = (1, 1, 1). Then we have a relation

By + By + By + B3
=(1—u—v+u*—uw+0?)?
x (u! —wPv — vt — w’ + ot
—u® 20 4 2uv® — 0P — W+ 2uv — P —u —-v-+—1) =0
Sincel —u — v +u? —uv +v? > 0if (2, y, 2) # P, we only consider the case
ut — P — Pt — P + 0t — B 4+ 200+ 2u? — P — P 2w — P —u—v+1=0
This define a rational quartic curve which can be parameterizéd-by1 — v)/(1 — u) as
—1 42t + 2t — 33+ t* 1—3t+42t* +2¢3 — t*
(3.7) u= , U=
1—t—t2—13 4 ¢4 1—t—t>—t3+t4
Substitute[(3]7) fof (3]6), and multiply
(1—t—t2—3 4148
2(2 — Bt + 2t2 4 213 — 5t + 2¢5)4(1 — 3t + 5t3 — 35 + 16)’

we obtain

(1 =3t 45t = 3t° +1%) +3t(1 —t)(1 — 2t — > + t¥)x
=31 —-t) (1 —t =22 +t)y — (1 =3t +*)(1 — 3> + %)z = 0.

SinceS is contained in a half space divided B#, we have the following:

(1 —3t+ 5t — 3t° +1°)5, + 3t(1 — t)(1 — 2t — t* + %) 53, (1.7)
>3t(1—t)(1 —t =22 + %) Sy 53+ (1 — 3t + ¢*)(1 — 3t> + ) Sy0.

But this is also a special case of Theofenj 1.2.

Some reader may want to obtain some inequalities @ittb5 1, S22, US; by the same way.
Letu:=a/c,v:=0b/cand

. Sz wv4vd+u _ Sap L US:
o 53—U4+U4—|—1, v= ng o 54.

This determines a rational quartic surfagas the following figure.
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(07071) (07171)
(1,0,1) A11)
(0,0,0)
(1,0,0) (1,1,0)

The singularities of5 are not only the poinf = (1, 1, 1) but also a curve as in the figure.
MoreoverS NR?} is not concave cone. This observation will not succeed. But see Rémprk 4.1.

4. APPENDIX: NOTE FOR THE ELEMENTARY SYMMETRIC POLYNOMIALS

For the elementary symmetric polynomidls= a+b+c, 511 = ab+ bc+ ca andU = abc,
the following theorem holds.

Theorem 4.1. For non-negative real numbres b, c,

(4.1) ASPU — S7ST, +457, — 185181,U + 27U < 0

holds.

Proof. Letz := 23 Y= SL; andt := —. SinceS, ; = ab + cla+0b) = v +¢(S1 — ¢), we
S St S1 ’ c

have

(4.2) x—ty+t*—t3=0.

Let L; be the line in(z, y)-plane defined by (4/2). The envelope of the fandilyis the curve
C defined by

4y —y? — 182y + 272 + 42 = 0
Note thatL, tangents ta' at

and this is a parametrization 6f. C' has a singular point & = (%, %) whent = 1/3.
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by = 211
St
1 P
3
Cy
1
1

Let C be the part of” with 0 < ¢ < 1/3, andC; be the part withl /3 < ¢ < 1/2. We shall
prove that wheru, b, ¢ vary all non-negative real numbers;, y) varies all the points of the
closed domairD defined by

4y —y? —18zy +272* + 42 <0, x>0, y>0.

We may assume < a,c < banda+ b+ c = 1. Then0 < t < 1/3. Thus the pointp(t), ¢(t))
moves all the point od;. Since(, is concave/; exists above;. Since

a+b\? 1—1\?
=tab <t =t —
mwsi(f52) = (F)

z variesO < z < ¢(1 — ¢)?/4. By (4.3), whenz = ¢(1 — t)?/4, theny = 1 + 2t — 3t>. This
point (z, y) lies onCs. 1

. . 9 1
Since(C, is convex, we havg < Tt

S5+ 3U > Ty,

. ThusS? +9U > 45,5, ;. This is equivalent to

Remark 4.1. We obtained a more strict inequality than (1.6), during this article is under pub-
lishing process. We only present its statement:
For non-negative real numbetsb, ¢ ands, and fort > 1, the following inequality holds:

(43) S4 — (28 — E) 5371 — (2 — St) 5173 + <82 -+ i2 — 2t> 8272
S S S

+(1-(s—1) 1+t Us, >0.
s 82

The equality holds ifand only it = b =cora:b:c=0:s:1oranycyclic permutation
thereof. Conversely, if < 1 ands > 0, there exists non-negative b, ¢ for which (4.3) does
not hold.
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Remark 4.2. We also announce the following: Let
Fy = 1283 + (t* — 2t)Soq — (2t° — 1)S1 5 — (3t* — 6t° + 3t* — 6t + 3)U,
Foo . 5271 —3U.
If f(a, b, c)is acubic homogeneous cyclic polynomial such that, b, ¢) > 0 for anya > 0,
b>0,c>0,andthatf(1, 1, 1) = 0, then there existy; > 0 ands; € [0, oo] (i = 1, 2, 3) such
thatf = A1F51 + /\2F92 + >\3F53.
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