


Paper's Title:
Weak solutions of non coercive stochastic NavierStokes equations in R^{2}
Author(s):
Wilhelm Stannat and Satoshi Yokoyama
Technische Universität Berlin,
Strasse des 17. Juni 136, 10623 Berlin,
Germany.
Graduate School of Mathematical Sciences,
The University of Tokyo,
Komaba, Tokyo 1538914,
Japan.
Email: stannat@math.tuberlin.de
Email: satoshi2@ms.utokyo.ac.jp
Abstract:
We prove existence of weak solutions of stochastic NavierStokes equations in R^{2} which do not satisfy the coercivity condition. The equations are formally derived from the critical point of some variational problem defined on the space of volume preserving diffeomorphisms in R^{2}. Since the domain of our equation is unbounded, it is more difficult to get tightness of approximating sequences of solutions in comparison with the case of a bounded domain. Our approach is based on uniform a priori estimates on the enstrophy of weak solutions of the stochastic 2DNavierStokes equations with periodic boundary conditions, where the periodicity is growing to infinity combined with a suitable spatial cutofftechnique.
Search and serve lasted 1 second(s).