


Paper's Title:
FeketeSzegö Problem for Univalent Functions with Respect to kSymmetric Points
Author(s):
K. AlShaqsi and M. Darus
School of Mathematical Sciences, Faculty of Science and Technology,
University Kebangsaan Malaysia,
Bangi 43600 Selangor D. Ehsan,
Malaysia
ommath@hotmail.com
maslina@ukm.my
Abstract:
In the present investigation, sharp upper bounds of a_{3} μa_{2}^{2} for functions f(z) = z + a_{2}z^{2} + a_{2}z^{3} + ... belonging to certain subclasses of starlike and convex functions with respect to ksymmetric points are obtained. Also certain applications of the main results for subclasses of functions defined by convolution with a normalized analytic function are given. In particular, Fekete Szegö inequalities for certain classes of functions defined through fractional derivatives are obtained.
Search and serve lasted 1 second(s).