


Paper's Title:
Strong Convergence Theorems for a Common Zero of an Infinite Family of GammaInverse Strongly Monotone Maps with Applications
Author(s):
Charles Ejike Chidume, Ogonnaya Michael Romanus, and Ukamaka Victoria Nnyaba
African University of Science and
Technology, Abuja,
Nigeria.
Email: cchidume@aust.edu.ng
Email: romanusogonnaya@gmail.com
Email: nnyabavictoriau@gmail.com
Abstract:
Let E be a uniformly convex and uniformly smooth real Banach space with
dual space E^{*} and let A_{k}:E→E^{*},
k=1, 2, 3 , ...
be a family of inverse strongly monotone maps such that ∩^{∞}_{k=1}
A_{k}^{1}(0)≠∅.
A new iterative algorithm is constructed and proved to converge strongly to a
common zero of the family.
As a consequence of this result, a strong convergence theorem for approximating
a common Jfixed point for an infinite family of
gammastrictly Jpseudocontractive maps is proved. These results are new and
improve recent results obtained for these classes of nonlinear maps.
Furthermore, the technique of proof is of independent interest.
Search and serve lasted 0 second(s).