


Paper's Title:
Stability of Almost Multiplicative Functionals
Author(s):
Norio Niwa, Hirokazu Oka, Takeshi Miura and SinEi Takahasi
Faculty of Engineering, Osaka ElectroCommunication University,
Neyagawa 5728530,
Japan
Faculty of Engineering, Ibaraki University,
Hitachi 3168511,
Japan
Department of Applied Mathematics and Physics, Graduate School of
Science and Engineering,
Yamagata University,
Yonezawa 9928510
Japan
oka@mx.ibaraki.ac.jp
miura@yz.yamagatau.ac.jp
sinei@emperor.yz.yamagatau.ac.jp
Abstract:
Let δ and p be nonnegative real numbers. Let be the real or complex number field and a normed algebra over . If a mapping satisfies
then we show that φ is multiplicative or for all If, in addition, φ satisfies
for some p≠1, then by using HyersUlamRassias stability of additive Cauchy equation, we show that φ is a ring homomorphism or for all In other words, φ is a ring homomorphism, or an approximately zero mapping. The results of this paper are inspired by Th.M. Rassias' stability theorem.
Search and serve lasted 1 second(s).