|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Rational Expressions of Arithmetic and Geometric Means for the Sequence
npn ∈ N and the Geometric Progression
Author(s):
M. Kinegawa, S. Miyamoto and Y. Nishizawa
Faculty of Education, Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: m.kinegawa.645@ms.saitama-u.ac.jp
Faculty of Education, Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: s.miyamoto.245@ms.saitama-u.ac.jp
Faculty of Education, Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail:
ynishizawa@mail.saitama-u.ac.jp
Abstract:
In this paper, we consider the arithmetic and geometric means for the sequence npn ∈ N and the geometric progression. We obtain the results associated with the rational expressions of the means.
Paper's Title:
Three Inequalities Associated with Rado Inequality
Author(s):
Rin Miyao, Yusuke Nishizawa, Keigo Takamura
Faculty of Education,
Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: r.miyao.242@ms.saitama-u.ac.jp
Faculty of Education,
Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail:
ynishizawa@mail.saitama-u.ac.jp
Faculty of Education,
Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: k.takamura.442@ms.saitama-u.ac.jp
Abstract:
In this short note we estimate three inequalities associated with Rado inequality and show the refinement and reverse of Arithmetic mean- Geometric mean inequality.
Paper's Title:
A Short Proof of an Open Inequality with Power-Exponential Functions
Author(s):
Mitsuhiro Miyagi and Yusuke Nishizawa
General Education, Ube National College of
Technology,
Tokiwadai 2-14-1, Ube,
Yamaguchi 755-8555,
Japan
E-mail:
miyagi@ube-k.ac.jp
yusuke@ube-k.ac.jp
Abstract:
V. Cîrtoaje conjectured that a3b + b3a + ( (a -b)/2 )4 ≤ 2 holds for all nonnegative numbers a and b with a +b =2. In this short note, we give a proof of the Cîrtoaje's conjecture with power-exponential functions.
Search and serve lasted 1 second(s).