The Australian Journal of Mathematical Analysis and Applications


Home News Editors Volumes RGMIA Subscriptions Authors Contact

ISSN 1449-5910  

 

You searched for nishizawa
Total of 8 results found in site

3: Paper Source PDF document

Paper's Title:

Rational Expressions of Arithmetic and Geometric Means for the Sequence npn ∈ N and the Geometric Progression

Author(s):

M. Kinegawa, S. Miyamoto and Y. Nishizawa

Faculty of Education, Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: m.kinegawa.645@ms.saitama-u.ac.jp
 
Faculty of Education, Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: s.miyamoto.245@ms.saitama-u.ac.jp

Faculty of Education, Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: ynishizawa@mail.saitama-u.ac.jp

Abstract:

In this paper, we consider the arithmetic and geometric means for the sequence npn ∈ N and the geometric progression. We obtain the results associated with the rational expressions of the means.



3: Paper Source PDF document

Paper's Title:

Three Inequalities Associated with Rado Inequality

Author(s):

Rin Miyao, Yusuke Nishizawa, Keigo Takamura

Faculty of Education,
Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: r.miyao.242@ms.saitama-u.ac.jp

Faculty of Education,
Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: ynishizawa@mail.saitama-u.ac.jp

Faculty of Education,
Saitama University,
Shimo-okubo 255, Sakura-ku, Saitama-city, Saitama,
Japan.
E-mail: k.takamura.442@ms.saitama-u.ac.jp

Abstract:

In this short note we estimate three inequalities associated with Rado inequality and show the refinement and reverse of Arithmetic mean- Geometric mean inequality.



2: Paper Source PDF document

Paper's Title:

A Short Proof of an Open Inequality with Power-Exponential Functions

Author(s):

Mitsuhiro Miyagi and Yusuke Nishizawa

General Education, Ube National College of Technology,
Tokiwadai 2-14-1, Ube,
Yamaguchi 755-8555,
Japan

E-mail: miyagi@ube-k.ac.jp   
yusuke@ube-k.ac.jp
 

Abstract:

V. Cîrtoaje conjectured that a3b + b3a + ( (a -b)/2 )4 ≤ 2 holds for all nonnegative numbers a and b with a +b =2. In this short note, we give a proof of the Cîrtoaje's conjecture with power-exponential functions.


Search and serve lasted 1 second(s).


© 2004-2023 Austral Internet Publishing