|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Stability of the D-Bar Reconstruction Method for Complex Conductivities
Author(s):
1S. El Kontar, 1T. El Arwadi, 1H. Chrayteh, 2J.-M. Sac-Épée
1Department of Mathematics and
Computer Science,
Faculty of Science, Beirut Arab University,
P.O. Box: 11-5020, Beirut,
Lebanon.
E-mail: srs915@student.bau.edu.lb
2Institut Élie Cartan de
Lorraine,
Université de Lorraine - Metz,
France.
Abstract:
In 2000, Francini solved the inverse conductivity problem for twice-differentiable conductivities and permittivities. This solution was considered to be the first approach using D-bar methods with complex conductivities. In 2012, based on Francini's work, Hamilton introduced a reconstruction method of the conductivity distribution with complex values. The method consists of six steps. A voltage potential is applied on the boundary. Solving a D-Bar equation gives the complex conductivity. In this paper, the stability of the D-Bar equation is studied via two approximations, texp and tB, for the scattering transform. The study is based on rewriting the reconstruction method in terms of continuous operators. The conductivity is considered to be non smooth.
Search and serve lasted 0 second(s).