|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Some interesting properties of finite continuous Cesàro operators
Author(s):
Abdelouahab Mansour and Abderrazak Hechifa
Operator theory laboratory (LABTHOP),
Eloued University,
Algeria.
E-mail:
amansour@math.univ-lyon1.fr
Mathematics Department,
Faculty of Science,
Badji Mokhtar University, -Annaba,
Algeria.
E-mail:
abderrazak02@gmail.com
Abstract:
A complex scalar λ is called an extended eigenvalue of a bounded linear operator T on a complex Banach space if there is a nonzero operator X such that TX = λ XT, the operator X is called extended eigenoperator of T corresponding to the extended eigenvalue λ.
In this paper we prove some properties of extended eigenvalue and extended eigenoperator for C1 on Lp([0,1]), where C1 is the Cesàro operator defined on the complex Banach spaces Lp([0 , 1]) for 1<p<∞ by the expression
Search and serve lasted 1 second(s).