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ABSTRACT. A complex scalai is called an extended eigenvalue of a bounded linear opéfator
on a complex Banach space if there is a nonzero opefasrch thafl’' X = AXT, the operator

X is called extended eigenoperatoriotorresponding to the extended eigenvalue

In this paper we prove some properties of extended eigenvalue and extended eigenopé&rator for
on L?([0, 1]), whereC is the Cesaro operator defined on the complex Banach spa¢gs1])

for 1 < p < oo by the expression

e =7 [ s
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1. INTRODUCTION

We represent by3(E) the algebra of all bounded linear operators on a complex Banch space
E. A complex scalan is called an extended eigenvalue of an operdtor B(E) provided
that there is a nonzero operatdr € B(FE) such thatl'’X = AXT, X called an extended

eigenoperator of’ corresponding to the extended eigenvalue We represent b}{T}/ the
commutant of the operatdr, i.e. the set of operators that commute withor in other words,

the family of all the extended eigenoperators Tocorresponding to the extended eigenvalue

A= 1

Recently, the study of the extended eigenvalues for some classes of operators has received a
considerable amount of attentioh[1, 2, 3]. The finite continuous Cesaro opéhamdefined

on the complex Banach spack¥[0, 1]) for 1 < p < co by the expression

1) uhe =7 [ s

Brown, Halmos and Shield$1[4] proved in the Hilbertian case iats indeed a bounded
linear operator, and they also proved tlhat C is unitarily equivalent to a unilateral shift of
multiplicity one. Consider a unilateral shift of multiplicity orfee B (L? [0, 1]) and a unitary
operatorU € B(L?*[0,1]) such thatl — C; = U*SU. We haveC; = U* (I — S*)U, it
follows that the extended eigenvalues(if are precisely the extended eigenvalueg ef S*,

and the extended eigenoperators(gfare in one to one correspondence with the extended
eigenoperators af — S* under conjugation withy.

In [6], the authors proved(, is an extended eigenoperator f0r on L*([0, 1]) where X is
given by

(1.2) (Xof)(w) =TI fE), 0<a <

In this paper we prove some properties of extended eigenvalue and extended eigenoperator for
Cyon LP([0, 1]).

2. PRELIMINARIES

Theorem 2.1.[6] if 0 < A < 1 then)\ is an extended eigenvalue for the Cesaro operator
on L?([0,1]) for 1 < p < oo and a corresponding extended eigenoperator is the weighted
composition operatoX, € B(L*[0, 1]) defined by(1.2).

Proof. First of all, let us show thak, is a bounded linear operator.
We have for every € L?([0,1]) for 1 < p < oo

/1 |(Xof)(x)[Pdx = /1xp(l—)\)/)\ ]f(xl/’\)}p d
0 0

1 1
A / Y PO | £ ()P dy < A / F)P dy.
0 0

Therefore X, is bounded orL?([0, 1]) with || X,|| < A7

Now let us show thatX, is an extended eigenoperator @f associated with the extended
eigenvalue\.

Letn € N and notice thafyz™ = z("*1-Y/ so that
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ClXol’n _ Clx(n+lf)\)/)\

A
_ l,(n-l—l—A)/A
n+1
A
= X()ZL’”
n+1
= )\XoClx"

and since the linear subspace sgaf : n € N} is a dense subset @ ([0, 1]), it follows that
Ci1 Xy = M\X(1, that is X is an extended eigenoperator @f associated with the extended
eigenvalue\. 1

Theorem 2.2. SpaceC'2°(Q2) of infinitely differentiable functions with compact support is dense
in L,(§2) for 1 < p < 0.

3. MAIN RESULTS

Theorem 3.1.1f 0 < XA < 1 then\ is an extended eigenvalue for the Cesaro operator
on L?([0,1]) for 1 < p < oo and a corresponding extended eigenoperator is the weighted
composition operatoX; € B(L?[0,1]), k € N defined by

o
(3.1) (X)) = ety L)

wheref is infinitely differentiable functions with compact support.

Proof. First of all, let us show thak is indeed a bounded linear operator. We have for every
feLr(]0,1])forl < p < o0

[xn@ra = [
_ /lxp<§+k—1>
0

1
_ / PN+ -1) (1)
0

- A/1 d* f(y)[”
0

dy* dy

and this shows thaX), is bounded orL.?([0, 1]) with || X[ < AY7.

Now let us show thatX, is an extended eigenoperator ©f associated with the extended
eigenvalue\.

Letn € N and notice that

P
(§+k—1)dkf(x%)

dxk
d* (%) |

dxk

dx

X

p

d* f(y) a0

dy*

1
Xt = Gtk
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so that

O X" = O <(§><§ S W gy e 1)x”*i‘*)

- ((%)(%-1)...(;—“1)) O™ 57
(GG o)
J— )\ n

 on+1 K

P xn

N kn—I—l

— AX,Cha",

and since the linear subspace spat : n € N} is a dense subset éP([0, 1]), it follows that
Ci1 X, = MX (1, that is X,k € N is an extended eigenoperator @f associated with the
extended eigenvalug g

Example 3.1.Let us suppose that an operatdy, defined by(3.7)

(1) If k = 0then(Xof)(z) = 24=N/A f(2'/*), by definition.

21/
(2) Ifhk=1 then<X1f)(x) = xl/Adf(dx _)_

Let us show thak(;, is an extended eigenoperator@f associated with the extended eigenvalue
A
Letn € N and notice thatX, 2" = {1z

n+

i so that

C’lex" = Cl <§xn+>\g>
)\ n n+}\—>\

n—i—l)\x
A

= Xll’n
n+1

= )\X101$n

X is an extended eigenoperator@f associated with the extended eigenvalue

Theorem 3.2. Let Q be the square root ok, defined by(T.2). If 0 < A < 1 thenv/A
is an extended eigenvalue for the Cesaro operdtpron LP([0,1]) for 1 < p < oo and a
corresponding extended eigenoperator is the weighted composition opéyato3(L?[0, 1])
defined by

(3.2) (QF)(x) = 233 (7).

Proof. First of all, let us show thak, = Q2.
Letn € N and notice thaf,z" = z(**1-Y/* so that

1-A n A=)VA+n(A+vX)
Q" =3 AxVva = x VAN
A=V A+ VX)VA+n(A+VA)
= VAA+V)
n+17\/X
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And it
ntl—vA =X p41-v2 (A=A +(n+1-vVN)A+VA)
Qr VX =z xAr X = IYOURVAY)

A= V) VI A+ (n+1-VX) (A+VA)

= X AA+VX)
A=V O+VI)VI+(4+1-VI) A+VX)

= I AA+VA)
ZE(TL—H_)\)/)\.

And this showsX, = Q2.
Also Q is bounded orL?([0, 1]) with [|Q|| < (VA)7.

LA

Now we will demonstraté) is an extended eigenoperator@f associated with the extended
eigenvaluey/\.

7L+1—\/X
We haveQ)z" = x v* | so that

n n+l—vX 1 1 n+1*\/X+1
CiQa" =Chz" v = ———— "%
In—i—l—\/x 1
B

\/X n+\1&\f/\

= x
n+1

n+1

The linear subspace spén” : n € N} is a dense subset 6P ([0, 1]), it follows thatC,Q =
VQC,, that is,Q is an extended eigenoperator®f associated with the extended eigenvalue

VA

Theorem 3.3.Let (), operator where);, = XO%, k € N*, X, defined byf1.2). If 0 < A < 1 then
A* is an extended eigenvalue for the Cesaro operatpon LP(]0,1]) for1 < p < oo and a

corresponding extended eigenoperator is the weighted composition opératerB(L?[0, 1])
defined by

(3.3) Q@) = (X§ f)(w) = wbote oF

Proof. We have, bounded or.?([0, 1]) with ||Qx|] < (A)fk.
In order to show),, is an extended eigenoperator@f associated with the extended eigenvalue

1
Ak, we have

—_—r o A=A/ Fpn AL/ R N2k 1y
foAE pAR = AR/ EL2/k 4 )

Ca1/ky 3 1/k_1—=X
O L N VL

1/k\1/k _1=X
1-A1/k

= X
A=AYFya— A/ Fpna—)al/k
= AL/E(1—a)aL/k

n+1—)\1/k
— g /R
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such that

nt1—Al/k 1 1 nt1-a1/k
CiQrx"™ = Cix \/E = r Al/k

+1

T nt1-A/k

Al/k n+1—>\1/k
— YL
n+1

)\1/k

= n+1Qkx

= AFQuCra".
The linear subspace spdn™ : n € N} is a dense subset @#([0, 1]), it follows thatC,Q; =

Al/kaCl, that is,Q);, is an extended eigenoperator@f associated with the extended eigen-
value\'/*. g

Theorem 3.4. Let ), operator where) . = Xo%,q € Nk € N* X, defined by(1.2). If
0 < A < 1then)t is an extended eigenvalue for the Cesaro operatpron L ([0, 1]) for

1 < p < oo and a corresponding extended eigenoperator is the weighted composition operator
Qq € B(LP[0, 1]) defined by

(3.4) (Qaif)(@) = (Xg f)(2) = (Qrf)(2),

whereQ),, is defined by3.3).

Proof. We have),. is an extended eigenoperator@f associated with the extended eigenvalue
Ak Therefore,

CiQr = N*QuCr = C1QL = X*QLC
= C1Qq = X" QuC1.
Thus,Q is an extended eigenoperator@f associated with the extended eigenvalt/é. g
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