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ABSTRACT. A complex scalarλ is called an extended eigenvalue of a bounded linear operatorT
on a complex Banach space if there is a nonzero operatorX such thatTX = λXT , the operator
X is called extended eigenoperator ofT corresponding to the extended eigenvalueλ.
In this paper we prove some properties of extended eigenvalue and extended eigenoperator forC1

onLp([0, 1]), whereC1 is the Cesàro operator defined on the complex Banach spacesLp([0, 1])
for 1 < p < ∞ by the expression

(C1f)(x) =
1
x

∫ x

0

f(t)dt.
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1. I NTRODUCTION

We represent byB(E) the algebra of all bounded linear operators on a complex Banch space
E. A complex scalarλ is called an extended eigenvalue of an operatorT ∈ B(E) provided
that there is a nonzero operatorX ∈ B(E) such thatTX = λXT , X called an extended
eigenoperator ofT corresponding to the extended eigenvalueλ. We represent by{T}

′
the

commutant of the operatorT, i.e. the set of operators that commute withT , or in other words,
the family of all the extended eigenoperators forT corresponding to the extended eigenvalue
λ = 1.
Recently, the study of the extended eigenvalues for some classes of operators has received a
considerable amount of attention[1, 2, 3]. The finite continuous Cesàro operatorC1 is defined
on the complex Banach spacesLp([0, 1]) for 1 < p < ∞ by the expression

(C1f)(x) =
1

x

∫ x

0

f(t)dt(1.1)

Brown, Halmos and Shields [4] proved in the Hilbertian case thatC1 is indeed a bounded
linear operator, and they also proved thatI − C∗1 is unitarily equivalent to a unilateral shift of
multiplicity one. Consider a unilateral shift of multiplicity oneS ∈ B (L2 [0, 1]) and a unitary
operatorU ∈ B (L2 [0, 1]) such thatI − C∗1 = U∗SU . We haveC1 = U∗ (I − S∗) U , it
follows that the extended eigenvalues ofC1 are precisely the extended eigenvalues ofI − S∗,
and the extended eigenoperators ofC1 are in one to one correspondence with the extended
eigenoperators ofI − S∗ under conjugation withU .
In [6], the authors provedX0 is an extended eigenoperator forC1 on Lp([0, 1]) whereX0 is
given by

(X0f)(x) = x(1−λ)/λf(x1/λ), 0 < λ ≤ 1(1.2)

In this paper we prove some properties of extended eigenvalue and extended eigenoperator for
C1 onLp([0, 1]).

2. PRELIMINARIES

Theorem 2.1. [6] if 0 < λ ≤ 1 thenλ is an extended eigenvalue for the Cesàro operatorC1

on Lp([0, 1]) for 1 < p < ∞ and a corresponding extended eigenoperator is the weighted
composition operatorX0 ∈ B(Lp[0, 1]) defined by(1.2).

Proof. First of all, let us show thatX0 is a bounded linear operator.
We have for everyf ∈ Lp([0, 1]) for 1 < p < ∞

∫ 1

0

|(X0f)(x)|p dx =

∫ 1

0

xp(1−λ)/λ
∣∣f(x1/λ)

∣∣p dx

= λ

∫ 1

0

y(p−1)(1−λ) |f(y)|p dy ≤ λ

∫ 1

0

|f(y)|p dy.

Therefore,X0 is bounded onLp([0, 1]) with ‖X0‖ ≤ λ1/p.
Now let us show thatX0 is an extended eigenoperator ofC1 associated with the extended
eigenvalueλ.
Let n ∈ N and notice thatX0x

n = x(n+1−λ)/λ, so that

AJMAA, Vol. 13, No. 1, Art. 10, pp. 1-6, 2016 AJMAA

http://ajmaa.org


SOME INTERESTING PROPERTIES OF FINITE CONTINUOUSCESÀRO OPERATORS 3

C1X0x
n = C1x

(n+1−λ)/λ

=
λ

n + 1
x(n+1−λ)/λ

=
λ

n + 1
X0x

n

= λX0C1x
n

and since the linear subspace span{xn : n ∈ N} is a dense subset ofLp([0, 1]), it follows that
C1X0 = λX0C1, that isX0 is an extended eigenoperator ofC1 associated with the extended
eigenvalueλ.

Theorem 2.2.SpaceC∞c (Ω) of infinitely differentiable functions with compact support is dense
in Lp(Ω) for 1 < p < ∞.

3. M AIN RESULTS

Theorem 3.1. If 0 < λ ≤ 1 thenλ is an extended eigenvalue for the Cesàro operatorC1

on Lp([0, 1]) for 1 < p < ∞ and a corresponding extended eigenoperator is the weighted
composition operatorXk ∈ B(Lp[0, 1]), k ∈ N defined by

(Xkf)(x) = x( 1
λ
+k−1)d

kf(x
1
λ )

dxk
,(3.1)

wheref is infinitely differentiable functions with compact support.

Proof. First of all, let us show thatXk is indeed a bounded linear operator. We have for every
f ∈ Lp([0, 1]) for 1 < p < ∞

∫ 1

0

|(Xkf)(x)|p dx =

∫ 1

0

∣∣∣∣∣x( 1
λ
+k−1)d

kf(x
1
λ )

dxk

∣∣∣∣∣
p

dx

=

∫ 1

0

xp( 1
λ
+k−1)

∣∣∣∣∣dkf(x
1
λ )

dxk

∣∣∣∣∣
p

dx

= λ

∫ 1

0

y(pkλ+(p−1)(1−λ))

∣∣∣∣dkf(y)

dyk

∣∣∣∣p dy

≤ λ

∫ 1

0

∣∣∣∣dkf(y)

dyk

∣∣∣∣p dy

and this shows thatXk is bounded onLp([0, 1]) with ‖Xk‖ ≤ λ1/p.
Now let us show thatXk is an extended eigenoperator ofC1 associated with the extended
eigenvalueλ.
Let n ∈ N and notice that

Xkx
n = x( 1

λ
+k−1)d

kx
n
λ

dxk

= x( 1
λ
+k−1)(

n

λ
)(

n

λ
− 1)....(

n

λ
− k + 1)x

n
λ
−k

= (
n

λ
)(

n

λ
− 1)....(

n

λ
− k + 1)x

n+1−λ
λ ,
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so that

C1Xkx
n = C1

(
(
n

λ
)(

n

λ
− 1)....(

n

λ
− k + 1)x

n+1−λ
λ

)
=

(
(
n

λ
)(

n

λ
− 1)....(

n

λ
− k + 1)

)
C1x

n+1−λ
λ

=
λ

n + 1

(
(
n

λ
)(

n

λ
− 1)....(

n

λ
− k + 1)

)
x

n+1−λ
λ

=
λ

n + 1
Xkx

n

= λXk
xn

n + 1
= λXkC1x

n,

and since the linear subspace span{xn : n ∈ N} is a dense subset ofLp([0, 1]), it follows that
C1Xk = λXkC1, that isXk, k ∈ N is an extended eigenoperator ofC1 associated with the
extended eigenvalueλ.

Example 3.1.Let us suppose that an operatorXk defined by(3.1)

(1) If k = 0 then(X0f)(x) = x(1−λ)/λf(x1/λ), by definition.

(2) If k = 1 then(X1f)(x) = x1/λ df(x1/λ)
dx

.

Let us show thatX1, is an extended eigenoperator ofC1 associated with the extended eigenvalue
λ.
Letn ∈ N and notice thatX1x

n = n
λ
x

n+1−λ
λ so that

C1X1x
n = C1

(n

λ
x

n+1−λ
λ

)
=

λ

n + 1

n

λ
x

n+1−λ
λ

=
λ

n + 1
X1x

n

= λX1C1x
n

X1 is an extended eigenoperator ofC1 associated with the extended eigenvalueλ.

Theorem 3.2. Let Q be the square root ofX0 defined by(1.2). If 0 < λ ≤ 1 then
√

λ
is an extended eigenvalue for the Cesàro operatorC1 on Lp([0, 1]) for 1 < p < ∞ and a
corresponding extended eigenoperator is the weighted composition operatorQ ∈ B(Lp[0, 1])
defined by

(Qf)(x) = x
1−λ

λ+
√

λ f(x
1√
λ ).(3.2)

Proof. First of all, let us show thatX0 = Q2.
Let n ∈ N and notice thatX0x

n = x(n+1−λ)/λ, so that

Qxn = x
1−λ

λ+
√

λ x
n√
λ = x

(1−λ)
√

λ+n(λ+
√

λ)√
λ(λ+

√
λ)

= x
(1−

√
λ)(1+

√
λ)
√

λ+n(λ+
√

λ)√
λ(λ+

√
λ)

= x
n+1−

√
λ√

λ
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And it

Qx
n+1−

√
λ√

λ = x
1−λ

λ+
√

λ x
n+1−

√
λ

λ = x
(1−λ)λ+(n+1−

√
λ)(λ+

√
λ)

λ(λ+
√

λ)

= x
(1−

√
λ)(1+

√
λ)λ+(n+1−

√
λ)(λ+

√
λ)

λ(λ+
√

λ)

= x
(1−

√
λ)(λ+

√
λ)
√

λ+(n+1−
√

λ)(λ+
√

λ)

λ(λ+
√

λ)

= x(n+1−λ)/λ.

And this showsX0 = Q2.
Also Q is bounded onLp([0, 1]) with ‖Q‖ ≤ (

√
λ)

1
p .

Now we will demonstrateQ is an extended eigenoperator ofC1 associated with the extended
eigenvalue

√
λ.

We haveQxn = x
n+1−

√
λ√

λ , so that

C1Qxn = C1x
n+1−

√
λ√

λ =
1

x

1
n+1−

√
λ√

λ
+ 1

x
n+1−

√
λ√

λ
+1

=

√
λ

n + 1
x

n+1−
√

λ√
λ

=

√
λ

n + 1
Qxn

=
√

λQC1x
n.

The linear subspace span{xn : n ∈ N} is a dense subset ofLp([0, 1]), it follows thatC1Q =√
λQC1, that is,Q is an extended eigenoperator ofC1 associated with the extended eigenvalue√
λ.

Theorem 3.3.LetQk operator whereQk = X
1
k
0 , k ∈ N∗, X0 defined by(1.2). If 0 < λ ≤ 1 then

λ
1
k is an extended eigenvalue for the Cesàro operatorC1 on Lp([0, 1]) for 1 < p < ∞ and a

corresponding extended eigenoperator is the weighted composition operatorQk ∈ B(Lp[0, 1])
defined by

(Qkf)(x) = (X
1
k
0 f)(x) = x

1−λ

λ
1
k +λ

2
k +....+λ

k
k f(x

1

λ1/k ).(3.3)

Proof. We haveQk bounded onLp([0, 1]) with ‖Qk‖ ≤ (λ)
1

pk .
In order to showQk is an extended eigenoperator ofC1 associated with the extended eigenvalue
λ

1
k , we have

Qkx
n = x

1−λ

λ
1
k +λ

2
k +....+λ

k
k x

n

λ
1
k = x

(1−λ)λ1/k+n(λ1/k+λ2/k+....+λ)

λ1/k(λ1/k+λ2/k+....+λ)

= x

(1−λ)λ1/k+nλ1/k 1−λ

1−λ1/k

λ1/kλ1/k 1−λ

1−λ1/k

= x
(1−λ1/k)(1−λ)λ1/k+n(1−λ)λ1/k

λ1/k(1−λ)λ1/k

= x
n+1−λ1/k

λ1/k ,
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such that

C1Qkx
n = C1x

n+1−λ1/k

λ1/k =
1

x

1
n+1−λ1/k

λ1/k + 1
x

n+1−λ1/k

λ1/k
+1

=
λ1/k

n + 1
x

n+1−λ1/k

λ1/k

=
λ1/k

n + 1
Qkx

n

= λ1/kQkC1x
n.

The linear subspace span{xn : n ∈ N} is a dense subset ofLp([0, 1]), it follows thatC1Qk =

λ1/kQkC1, that is,Qk is an extended eigenoperator ofC1 associated with the extended eigen-
valueλ1/k.

Theorem 3.4. Let Qqk operator whereQqk = X
q
k
0 , q ∈ N, k ∈ N∗, X0 defined by(1.2). If

0 < λ ≤ 1 thenλ
q
k is an extended eigenvalue for the Cesàro operatorC1 on Lp([0, 1]) for

1 < p < ∞ and a corresponding extended eigenoperator is the weighted composition operator
Qqk ∈ B(Lp[0, 1]) defined by

(Qqkf)(x) = (X
q
k
0 f)(x) = (Qq

kf)(x),(3.4)

whereQk is defined by(3.3).

Proof. We haveQk is an extended eigenoperator ofC1 associated with the extended eigenvalue
λ1/k. Therefore,

C1Qk = λ1/kQkC1 ⇒ C1Q
q
k = λq/kQq

kC1

⇒ C1Qqk = λq/kQqkC1.

Thus,Qqk is an extended eigenoperator ofC1 associated with the extended eigenvalueλq/k.
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