|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Residual-Based A Posteriori Error Estimates For A Conforming Mixed Finite Element Discretization of the Monge-Ampere Equation
Author(s):
J. Adetola, K. W. Houedanou and B. Ahounou
Institut de Mathematiques et de Sciences
Physiques (IMSP),
Universite d'Abomey-Calavi
E-mail: adetolajamal58@yahoo.com
Departement de Mathematiques,
Faculte des Sciences et Techniques (FAST),
Universite d'Abomey-Calavi
E-mail: khouedanou@yahoo.fr
Departement de Mathematiques,
Faculte des Sciences et Techniques (FAST),
Universite d'Abomey-Calavi
E-mail: bahounou@yahoo.fr
Abstract:
In this paper we develop a new a posteriori error analysis for the Monge-Ampere equation approximated by conforming finite element method on isotropic meshes in R2. The approach utilizes a slight variant of the mixed discretization proposed by Gerard Awanou and Hengguang Li in [4]. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient.
Search and serve lasted 1 second(s).