|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper Title:
On a Generalized Biharmonic Equation in Plane Polars with Applications to Functionally Graded Materials
Author(s):
Ciro D'Apice
Department of Information Engineering and Applied Mathematics (DIIMA),
University of Salerno, 84084 Fisciano (SA),
Salerno, Italy.
dapice@diima.unisa.it
Abstract:
In this paper we consider a generalized biharmonic
equation modelling a two-dimensional inhomogeneous
elastic state in the curvilinear rectangle where
denote plane polar
coordinates. Such an arch--like region is maintained in equilibrium under
self--equilibrated traction applied on the edge
while the other three
edges
and
are traction free. Our
aim is to derive some explicit spatial exponential decay bounds for the
specific Airy stress function and its derivatives. Two types of smoothly
varying inhomogeneity are considered: (i) the elastic moduli vary
smoothly with the polar angle, (ii) they vary smoothly
with the polar distance. Such types of smoothly varying inhomogeneous elastic
materials provide a model for technological important functionally graded
materials. The results of the present paper prove how the spatial decay rate
varies with the constitutive profile.
Full Text PDF: