|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
A Unifying View of Some Banach Algebras
Author(s):
R. Kantrowitz
Mathematics & Statistics Department,
Hamilton College,
198 College Hill Road,
Clinton, NY 13323, USA.
E-mail: rkantrow@hamilton.edu
Abstract:
The purpose of this article is to shed light on a unifying framework for some normed algebras and, in particular, for some Banach algebras. The focus is on linear operators T between normed algebras X and Y and specified subalgebras A of Y. When the action of T on products in X satisfies a certain operative equation, the subspace T-1(A) is stable under the multiplication of X and is readily equipped with a family of canonical submultiplicative norms. It turns out that many familiar and important spaces are encompassed under this versatile perspective, and we offer a sampling of several such. In this sense, the article presents an alternative lens through which to view a host of normed algebras. Moreover, recognition that a normed linear space conforms to this general structure provides another avenue to confirming that it is at once stable under multiplication and also outfitted with an abundance of equivalent submultiplicative norms.
Search and serve lasted 0 second(s).