|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Semicommutative and Semiprime Properties in Bi-amalgamated Rings
Author(s):
1A. Aruldoss, 2C. Selvaraj, 3G. E. Chatzarakis, 4S. L. Panetsos, 5U. Leerawat
1
Department of Mathematics,
Mepco Schlenk Engineering College,
Sivakasi-626 005, Tamilnadu,
India.
aruldossa529@gmail.com
2
Department of Mathematics,
Periyar University,
Salem - 636 011, Tamilnadu,
India.
selvavlr@yahoo.com
3,4
Department of Electrical and Electronic Engineering Educators,
School of Pedagogical and Technological Education (ASPETE),
Marousi 15122, Athens,
Greece.
geaxatz@otenet.gr
spanetsos@aspete.gr
5
Department of Mathematics,
Faculty of Science, Kasetsart University,
Bangkok 10900,
Thailand.
fsciutl@ku.ac.th
Abstract:
Let α: A→ B and β: A→ C be two ring homomorphisms and I and I' be two ideals of B and C, respectively, such that α{-1}(I)=β{-1}(I'). In this paper, we give a characterization for the bi-amalgamation of A with (B, C) along (I, I') with respect to (α, β) (denoted by A⋈(α, β)(I, I')) to be a SIT, semiprime, semicommutative and semiregular. We also give some characterization for these rings.
Search and serve lasted 0 second(s).