

SEMICOMMUTATIVE AND SEMIPRIME PROPERTIES IN BI-AMALGAMATED RINGS

A. ARULDOSS¹, C. SELVARAJ², G. E. CHATZARAKIS³, S. L. PANETSOS^{4*}, AND U. LEERAWAT⁵

Received 6 February, 2024; accepted 14 August, 2024; published 25 October, 2024.

¹DEPARTMENT OF MATHEMATICS, MEPCO SCHLENK ENGINEERING COLLEGE, SIVAKASI-626 005, TAMILNADU, INDIA. [aruldossa529@gmail.com](mailto: <aruldossa529@gmail.com>)

²DEPARTMENT OF MATHEMATICS, PERIYAR UNIVERSITY, SALEM - 636 011, TAMILNADU, INDIA. [selvavlr@yahoo.com](mailto: <selvavlr@yahoo.com>)

³,⁴ DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EDUCATORS, SCHOOL OF PEDAGOGICAL AND TECHNOLOGICAL EDUCATION (ASPETE), MAROUSI 15122, ATHENS, GREECE. [geaxatz@otenet.gr,](mailto: <geaxatz@otenet.gr>) [spanetsos@aspete.gr](mailto:<spanetsos@aspete.gr>)

⁵DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KASETSART UNIVERSITY, BANGKOK 10900, THAILAND. [fsciutl@ku.ac.th](mailto: <fsciutl@ku.ac.th>)

ABSTRACT. Let $\alpha : A \to B$ and $\beta : A \to C$ be two ring homomorphisms and I and I' be two ideals of B and C, respectively, such that $\alpha^{-1}(I) = \beta^{-1}(I')$. In this paper, we give a characterization for the bi-amalgamation of A with (B, C) along (I, I') with respect to (α, β) (denoted by $A \bowtie^{\alpha,\beta} (I, I')$) to be a SIT, semiprime, semicommutative and semiregular. We also give some characterization for these rings.

Key words and phrases: Idempotent; Tripotent; Semicommutative; Semiprime ring; Semiregular ring.

2010 *[Mathematics Subject Classification.](https://www.ams.org/msc/)* Primary 16S70, 16D80. Secondary 16S99.

ISSN (electronic): 1449-5910

^{© 2024} Austral Internet Publishing. All rights reserved.

The fourth author was supported by the Special Account for Research of ASPETE through the funding program "Strengthening research of ASPETE faculty members".

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with identity. For a ring R , we will use $J(R)$, $Id(R)$, $Tr(R)$ and $C(R)$, to denote the Jacobson radical, the set of idempotents, the set of all tripotents and the centre of R, respectively.

In 2016, Zhiling Ying et.all [\[22\]](#page-8-0) investigated that rings for which every element is a sum of an idempotent and a tripotent that commute.

Let A and B be two commutative rings with unity, let I be an ideal of B and let $\alpha : A \rightarrow B$ be a ring homomorphism. In this setting, we can consider the following subring of $A \times B$:

$$
A \bowtie^{\alpha} I := \{(a, \alpha(a) + i) \mid a \in A, i \in I\}
$$

called *the amalgamation of* A *with* B *along* I *with respect to* α (introduced and studied by D'Anna, Finocchiaro, and Fontana in [\[11,](#page-8-1) [12\]](#page-8-2)). This construction is a generalization of *the amalgamated duplication of a ring along an ideal* (introduced and studied by D'Anna and Fontana in [\[8,](#page-8-3) [9,](#page-8-4) [10\]](#page-8-5)).

Let $\phi_1: A \longrightarrow C$, $\phi_2: A \longrightarrow C$ and $\alpha: A \longrightarrow B$ be ring homomorphisms. In the aforementioned papers [\[11,](#page-8-1) [12\]](#page-8-2), the authors studied amalgamated algebras within the frame of pullback $\phi_1 \times \phi_2$ such that $\phi_1 = \phi_2 \circ \alpha$ [\[11,](#page-8-1) Proposition 4.2 and 4.4]. In this motivation, the authors created the new constructions, called bi-amalgamated algebras which arise as pullbacks $\phi_1 \times \phi_2$ such that the following diagram of ring homomorphims

is commutative with $\phi_1 \circ \pi_B(\phi_1 \times \phi_2) = \phi_1 \circ \alpha(A)$, where π_B denotes the canonical projection of $B \times C$ over B. Namely, let $\alpha : A \longrightarrow B$ and $\beta : A \longrightarrow C$ be two ring homomorphisms and let I and I' be two ideals of B and C, respectively, such that $\alpha^{-1}(I) = \beta^{-1}(I')$. The bi-amalgamation of A with (B, C) along (I, I') with respect to (α, β) is the subring of $B \times C$ given by

$$
A \bowtie^{\alpha, g} (I, I') := \{ (\alpha(a) + i, \beta(a) + i') | a \in A, (i, i') \in I \times I' \}.
$$

A ring R is called semicommutative if for any $a, b \in R$, $ab = 0$ implies $aRb = 0$. R is semicommutative if and only if the right (left) annihilator over R is an ideal of R . Every commutative ring is semicommutative. Therefore, if A and B are commutative, then the ring $A \times B$ is commutative, and so is $A \bowtie^{\alpha} I$ as a subring of $A \times B$. A ring R is called nil-semicommutative [\[17\]](#page-8-6), if $ab = 0$ implies $aRb = 0$ for every nilpotent elements $a, b \in R$. Every semicommutative ring is nil-semicommutative. Another version of semicommutativity is weakly semicommutativity. In [\[17,](#page-8-6) [7\]](#page-8-7), weakly semicommutative rings were investigated. The ring R is called weakly semicommutative if for any $a, b \in R$, $ab = 0$ implies arb is nilpotent for any $r \in R$. Clearly, semicommutative rings are weakly semicommutative. There is no implication between nil-semicommutative rings and weakly semicommutative rings.

In [\[2,](#page-8-8) [14\]](#page-8-9), authors have studied semicommutativity of amalgamated rings and SIT-rings of amalgamated algebra along an ideal. This motivates as we study many ring theoretical properties of the bi-amalgamation ring $A \bowtie^{\alpha,\beta} (I, I').$

In this paper, we study many ring theoretical properties of the bi-amalgamation ring $A \bowtie^{\alpha,\beta}$ (I, I') , in the case where the rings are not assumed to be commutative. We give characterizations for the bi-amalgamation ring $A \Join^{\alpha,\beta} (I, I')$ to be SIT-ring, semiregular, semicommutative, semiprime, nil-semicommutative, weakly semicommutative rings.

2. SIT-RING PROPERTY IN BI-AMALGAMATED RINGS

We start with a definition and examples of SIT-rings.

Definition 2.1. [\[22\]](#page-8-0) A ring is said to be a (strong) SIT-ring if every element is a sum of an idempotent and a tripotent (that commute).

Proposition 2.1. [\[22\]](#page-8-0) *The class of SIT-rings is closed under homomorphic images.*

Definition 2.2. Let $\alpha : A \longrightarrow B$ and $\beta : A \longrightarrow C$ be two ring homomorphisms and let I and I' be two ideals of B and C, respectively, such that $I_0 := \alpha^{-1}(I) = \beta^{-1}(I')$. The biamalgamation of A with (B, C) along (I, I') with respect to (α, β) is the subring of $(B \times C)$ given by $A \bowtie^{\alpha,\beta} (I, I') := \{ (\alpha(a) + i, \beta(a) + i') | a \in A, (i, i') \in I \times I' \}.$

Following [\[15\]](#page-8-10), the above definition was introduced and studied by Kabbaj, Louartiti and Tamekkante in 2013.

Example 2.1. Let
$$
A = \mathbb{Z}_2
$$
 and $B = \begin{pmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{pmatrix}$ and $C = \begin{pmatrix} \mathbb{Z}_2 & 0 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 & 0 \end{pmatrix}$ be rings and
\n $I = \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{Z}_2 \end{pmatrix}$ an ideal of B and $I' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \mathbb{Z}_2 \end{pmatrix}$ an ideal of C.
\nLet $\alpha : A \rightarrow B$ defined by $\alpha(a) = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$, where $a \in \mathbb{Z}_2$ and $\beta : A \rightarrow C$ defined by
\n $\beta(a) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a \end{pmatrix}$ where $a \in \mathbb{Z}_2$.
\nThen $\alpha(A) + I = \begin{cases} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{cases}$ and $\beta(A) + I' = \begin{cases} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \end{cases}$.
\nHence, $\alpha(A) + I$ and $\beta(A) + I'$ are SIT-rings.
\nAlso, $A \Join^{a,g} (I, I') = \begin{cases} \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix}$,
\n

Proposition 2.2. *If* $A \bowtie^{\alpha,\beta} (I, I')$ *is a SIT-ring then* $\alpha(A) + I$ *and* $\beta(A) + I'$ *are SIT-rings.*

Proof. Clearly, homomorphic image of a SIT-ring is a SIT-ring. Thus, in view of [\[15,](#page-8-10) Proposition 4.1], we have the following isomorphism of rings $\frac{A \bowtie^{ \alpha, \beta}(I, I')}{0 \vee I'}$ $\frac{\alpha,\beta(I,I')}{0\times I'} \cong \alpha(A) + I$ and $\frac{A\bowtie^{\alpha,\beta}(I,I')}{I\times 0}$ $\frac{\alpha,\beta(I,I')}{I\times0}\cong$ $\beta(A) + I'$. Hence, $\alpha(A) + I$ and $\beta(A) + I'$ are SIT-rings.

Definition 2.3. A ring R is called uniquely SIT-ring if each element in R can be written uniquely as the sum of an idempotent and a tripotent.

Proposition 2.3. Assume that A is a SIT-ring and $\frac{\alpha(A) + I}{I}$ I and $\frac{\beta(A)+I'}{I'}$ I ′ *are uniquely SITrings. Then* $A \bowtie^{\alpha,\beta} (I, I')$ *is a SIT-ring if and only if* $\alpha(A) + I$ *and* $\beta(A) + I'$ *are SIT-rings.*

Proof. If $A \bowtie^{\alpha,\beta} (I, I')$ is a SIT-ring, then so are $\alpha(A) + I$ and $\beta(A) + I'$. Conversely, assume that $\alpha(A) + I$ and $\beta(A) + I'$ are SIT-rings. Since A is a SIT-ring, we can write $a = e + t$, where $e \in Id(A)$ and $t \in Tr(A)$. On the other hand, since $\alpha(A) + I$ is a SIT-ring, $\alpha(a) + i =$ $\alpha(x)+i_1+\alpha(y)+i_2$ with $\alpha(x)+i_1$ and $\alpha(y)+i_2$ are respectively an idempotent and a tripotent element of $\alpha(A) + I$. It is clear that $\alpha(x) = \alpha(x) + i_1$ (resp., $\alpha(e)$) and $\alpha(y) = \alpha(y) + i_2$ (resp., $\overline{\alpha(t)}$), are respectively an idempotent and a tripotent element of $\frac{\alpha(A) + I}{I}$, and we have $\overline{\alpha(a)} = \overline{\alpha(e)} + \overline{\alpha(t)} = \overline{\alpha(x)} + \overline{\alpha(y)}$. Thus, $\overline{\alpha(e)} = \overline{\alpha(x)}$ and $\overline{\alpha(t)} = \overline{\alpha(y)}$ since $\frac{\alpha(A) + I}{I}$ is an uniquely SIT-ring. So there exist $i_1^*, i_2^* \in K$ such that $\alpha(x) = \alpha(e) + i_1^*$ and $\alpha(y) = \alpha(t) + i_2^*$ and also since $\beta(A)+I'$ is a SIT-ring, $\beta(a)+i' = \beta(x)+i'_1+\beta(y)+i'_2$ with $\beta(x)+i'_1$ and $\beta(y)+i'_2$ are respectively an idempotent and a tripotent element of $\beta(A)+I'$. It is clear that $\overline{\beta(x)} = \overline{\beta(x)+i'_1}$ (resp., $\overline{\beta(e)}$) and $\overline{\beta(y)} = \overline{\beta(y) + i'_2}$ (resp., $\overline{\beta(t)}$) are respectively an idempotent and a tripotent element of $\frac{\beta(A) + I'}{I'}$ $\frac{\partial f}{\partial t}$, and we have $\beta(a) = \beta(e) + g(t) = \beta(x) + \beta(y)$. Thus, $\beta(e) = \beta(x)$ and $\overline{\beta(t)} = \overline{\beta(y)}$ since $\frac{\beta(A) + I'}{I'}$ $\frac{1}{I'}$ is an uniquely SIT-ring. So there exist $i_1^{'*}, i_2^{'*} \in I'$ such that $\beta(x) = \beta(e) + i_1'$ and $\beta(y) = \beta(t_1) + i_2'$. We have, $(\alpha(a) + i, \beta(a) + i') = (\alpha(e) + i_1' + i_1, \beta(e) + i_2'$ $i_1^{'*} + i_1' + (\alpha(i_1) + i_2^* + i_2, \beta(i_1) + i_2'^* + i_2'),$ and it is clear that $(\alpha(e) + i_1^* + i_1, \beta(e) + i_1'^* + i_1')$ is an idempotent and $(\alpha(t_1) + i_2^* + i_2, \beta(t_1) + i_2'^* + i_2')$ tripotent elements of $A \bowtie^{\alpha, \beta} (I, I')$.

Proposition 2.4. *Let* α : $A \rightarrow B$ *and* β : $A \rightarrow C$ *be a ring homomorphisms and let* (e_1) *be an ideal of* B generated by the central idempotent element e_1 *and* (e_2) *be an ideal of* C generated *by the central idempotent element* e_2 . Assume that A *is a SIT-ring. Then* $A \bowtie^{\alpha,\beta} ((e_1), (e_2))$ *is a SIT-ring if and only if* $\alpha(A) + (e_1)$ *and* $\beta(A) + (e_2)$ *are SIT-ring.*

Proof. Suppose that $\alpha(A) + (e_1)$ and $\beta(A) + (e_2)$ are SIT rings. In light of Proposition 2.2, we only have to show that $A \bowtie^{\alpha,\beta} ((e_1),(e_2))$ is a SIT-ring. Let $(\alpha(a) + r_1e_1, \beta(a) + r_2e_2)$ be an element of $A \bowtie^{\alpha,\beta} (e_1), (e_2)$ (with $a \in A$, $r_1 \in B$ and $r_2 \in C$). Since A is a SIT-ring, we can write $a = s + t$, where $s \in Id(A)$ and $t \in Tr(A)$ and also since $\alpha(A) + (e_1)$ and $\beta(A) + (e_2)$ are SIT-rings, we can write $\alpha(a) + r_1e_1 = s' + t'$, where $s' \in Id(\alpha(A) + (e_1))$ and $t' \in Tr(\alpha(A) + (e_1))$ and $\beta(a) + r_2e_2 = s'' + t''$, where $s'' \in Id(\beta(A) + (e_2))$ and $t'' \in Tr(\beta(A) + (e_2))$. We have $(\alpha(a) + r_1e_1, \beta(a) + r_2e_2) = (\alpha(s) + (s' - \alpha(s))e_1, \beta(s) +$ $(s'' - \beta(s))e_2$ + $(\alpha(t) + (t' - \alpha(t))e_1, \beta(t) + (t'' - \beta(t))e_2$. On the other hand,

$$
[\alpha(s) + (s' - \alpha(s))e_1]^2 = [\alpha(s)(1 - e_1) + s'e_1]^2
$$

= $\alpha(s)(1 - e_1) + s'e_1$
= $\alpha(s) + (s' - \alpha(s))e_1$.

$$
[\alpha(t) + (t' - \alpha(t))e_1]^3 = [\alpha(t)(1 - e_1) + t'e_1]^3
$$

= $\alpha(t)(1 - e_1) + t'e_1$
= $\alpha(t) + (t' - \alpha(t))e_1.$

Similarly, $\beta(s) + (s'' - \beta(s))e_2$ is an idempotent of $\beta(A) + (e_2)$ and $\beta(t) + (t'' - \beta(t))e_2$ is a tripotent of $\beta(A) + (e_2)$. Then, $(\alpha(s) + (s' - \alpha(s))e_1, \beta(s) + (s'' - \beta(s))e_2)$ and $(\alpha(t) + (t' \alpha(t)$) e_1 , $\beta(t)+(t''-\beta(t))e_2$) respectively are an idempotent and tripotent in $A \bowtie^{\alpha,\beta} (e_1),(e_2)$. Consequently, $A \bowtie^{\alpha, \beta} ((e_1), (e_2))$ is a SIT-ring, as desired.

 \blacksquare

3. SEMIREGULAR PROPERTY IN BI-AMALGAMATED RINGS

Proposition 3.1. [\[18,](#page-8-11) Proposition 2.2] *The following are equivalent for an element* a *of a ring* R*.*

- (1) *There exists* $e^2 = e \in aR$ *such that* $(1 e)a \in J(R)$ *.*
- (2) *There exists* $e^2 = e \in aR$ *such that* $a(1 e) \in J(R)$ *.*
- (3) *There exists a regular element* $b \in R$ *with* $a b \in J(R)$ *.*
- (4) *There exists* $b \in R$ *with* $bab = b$ *and* $a aba \in J(R)$ *.*

By Nicholson [\[18\]](#page-8-11), an element a of a ring R is called semiregular, if it satisfies any one of the above conditions. A ring is a semiregular if each of its elements is semiregular. Nicholson in [\[18,](#page-8-11) Theorem 2.9], shows that a ring R is semiregular if $\frac{R}{J(R)}$ is von Neumann regular and idempotents lift modulo $J(R)$. The class of semiregular rings is very large. For example every von Neumann regular ring is semiregular.

Lemma 3.2. *Let* $a \in J(R)$ *. Then we have* $J(A \bowtie^{\alpha,\beta} (I, I'))$ = $\{(\alpha(a) + i, \beta(a) + i') | \alpha(a) + i \in J(\alpha(A) + I), \beta(a) + i' \in J(\beta(A) + I')\}.$

Proposition 3.3. If $A \Join^{\alpha,\beta}(I, I')$ is a semiregular, then $\alpha(A) + I$ and $\beta(A) + I'$ are semiregular.

Proof. Note that $\alpha(A) + I$ and $\beta(A) + I'$ are homomorphic images of $A \bowtie^{\alpha,\beta} (I, I')$. Then the result follows immediately from [\[18,](#page-8-11) Corollary 2.3].

Lemma 3.4. *If I is a nil ideal of B and I' is a nil ideal of C*, then $J(\alpha(A)) + I \subseteq J(\alpha(A) + I)$ *and* $J(\beta(A)) + I' \subseteq J(\beta(A) + I')$ *.*

Proof. This was proved in [\[20,](#page-8-12) Lemma 4.6]. ■

In view of [\[18,](#page-8-11) Corollary 2.3], every homomorphic image of a semiregular ring is semiregular, so if A is semiregular then $\alpha(A)$ is semiregular.

Theorem 3.5. Let I be a nil ideal of B and I' be a nil ideal of C and A be a semiregular ring. *Then* $A \bowtie^{\alpha,\beta} (I, I')$ *is a semiregular ring.*

Proof. Let $(\alpha(a) + i, \beta(a) + i') \in A \bowtie^{\alpha, \beta} (I, I')$. Since $\alpha(a) \in f(A)$ is semiregular and $\beta(a) \in \beta(A)$ is semiregular, there exists a von-Neumann regular element $b \in A$ with $\alpha(a)$ – $\alpha(b) \in J(\alpha(A))$ and $\beta(a) - \beta(b) \in J(\beta(A))$. So $\alpha(a) - \alpha(b) + i \in J(\alpha(A)) + I \subseteq J(\alpha(A) + I)$ and $g(a) - g(b) + i' \in J(g(A)) + I' \subseteq J(\beta(A) + I')$, by Lemma 3.4. Thus $(\alpha(a) + i) - \alpha(b) \in$ $J(\alpha(A) + I)$ for a von Neumann regular element $\alpha(b) \in \alpha(A) + I$ and $(\beta(a) + i') - \beta(b) \in$ $J(\beta(A) + I')$ for a von Neumann regular element $\beta(b) \in \beta(A) + I'$. So for the von Neumann regular element $(\alpha(b), \beta(b)) \in A \bowtie^{\alpha, \beta} (I, I'), (\alpha(a) + i, \beta(a) + i') - (\alpha(b), \beta(b)) \in J(A \bowtie^{\alpha, \beta})$ (I, I') , by the Lemma 3.2 and the result follows.

Corollary 3.6. Let I be a nil ideal of B and I' be a nil ideal of C and A be a semiregular ring. *Then* $\alpha(A) + I$ *and* $\beta(A) + I'$ *are semiregular rings.*

Using [\[19,](#page-8-13) Proposition 1.1], we conclude the following.

Proposition 3.7. Let $A \bowtie^{\alpha,\beta} (I, I')$ be an exchange ring. Then $\alpha(A) + I$ and $\beta(A) + I'$ are *exchange rings.*

Proof. Note that $\alpha(A) + I$ and $\beta(A) + I'$ are homomorphic images of $A \bowtie^{\alpha,\beta}(I, I')$. The result is an immediate consequence of [\[19,](#page-8-13) Proposition 1.4] \blacksquare

Since by [\[19,](#page-8-13) Proposition 1.4], every homomorphic image of an exchange ring is exchange, if A is an exchange ring then $\alpha(A)$ is an exchange ring.

Theorem 3.8. Let I be a nil ideal of B, I' be a nil ideal of C and A be an exchange ring. Then $A \bowtie^{\alpha,\beta} (I, I')$ *is an exchange ring.*

Proof. Let $(\alpha(a) + i, \beta(a) + i') \in A \bowtie^{\alpha, \beta} (I, I')$. As A is an exchange ring, $\alpha(A)$ and $\beta(A)$ are exchange rings. So for $(\alpha(e))^2 = \alpha(e) \in \alpha(A)\alpha(a), \alpha(c) \in \alpha(A)$ and $(\beta(e))^2 = \beta(e) \in \alpha(A)$ $\beta(A)\beta(a), \beta(c) \in \beta(A)$, we have $(\alpha(1) - \alpha(e)) - \alpha(c)(\alpha(1) - \alpha(a)) \in J(\alpha(A))$ and $(\beta(1) \beta(e)) - \beta(c)(\beta(1) - \beta(a)) \in J(\beta(A))$. Then $(\alpha(1) - \alpha(e)) - \alpha(c)(\alpha(1) - \alpha(a)) + \alpha(c)i \in$ $J(\alpha(A)) + I$ and $(\beta(1) - \beta(e)) - \beta(c)(\beta(1) - \beta(a)) + \beta(c)i' \in J(\beta(A)) + I'$ and hence by Lemma 3.2, $(1 - \alpha(e)) - \alpha(c)(1 - (\alpha(a) + i)) \in J(\alpha(A) + I)$ and $(1 - \beta(e)) - \beta(c)(1 - (\beta(a) + i')) \in$ $J(\beta(A)+I'),$ for $(\alpha(e))^2 = \alpha(e) \in (\alpha(A)+I)(\alpha(a)+i), (\beta(e))^2 = \beta(e) \in (\beta(A)+I')(\beta(a)+I')$ *i'*) and $\alpha(c) \in \alpha(A) + I$, $\beta(c) \in \beta(A) + I'$. Thus for $((\alpha(e), \beta(e))^2 = (\alpha(e), \beta(e)) \in A \bowtie^{\alpha, \beta}(A)$ (I, I') and $(\alpha(c), \beta(c)) \in A \bowtie^{\alpha, \beta} (I, I')$, we have $((1, 1) - (\alpha(e), \beta(e)) - (\alpha(c), \beta(c))((1, 1) - (\alpha(e), \beta(e)))$ $(\alpha(a) + i, \beta(a) + i') \in J(A \bowtie^{\alpha, \beta} (I, I'))$, by Lemma 3.4 and the result follows.

4. SEMICOMMUTATIVE AND SEMIPRIME PROPERTIES IN BI-AMALGAMATED RINGS

In this section, we prove that properties of semicommutativity, nil-semicommutativity and weak semicommutativity in bi-amalgamted rings.

Theorem 4.1. *Let* A, B and C be rings, $\alpha : A \longrightarrow B$ and $\beta : A \longrightarrow C$ be ring homomorphisms *and let* I *and* I ′ *be two ideals of* B *and* C, *respectively. Then the following hold:*

- (1) If $\alpha(A) + I$ and $\beta(A) + I'$ are semicommutative rings, then so is $A \bowtie^{\alpha,\beta} (I, I')$.
- (2) Assume that $I \cap S \neq \emptyset$, where S is the set of all central regular elements of B and $I' \cap S' \neq \emptyset$, where S' is the set of all central regular elements of C. Then $A \bowtie^{\alpha,\beta} (I, I')$ *is a semicommutative ring if and only if* $\alpha(A) + I$ *and* $\beta(A) + I'$ *are semicommutative rings.*

Proof. (1) Note that the class of semicommutative rings is closed under finite products and subrings. This implies (1).

(2) To prove that $\alpha(A) + I$ is semicommutative, let $\alpha(a) + i_1, \alpha(b) + i_2 \in \alpha(A) + I$ with $(\alpha(a) + i_1)(\alpha(b) + i_2) = 0$ and let $0 \neq s \in I \cap S$. Using $(s(\alpha(a) + i_1), 0)((\alpha(b) + i_2)s, 0) = 0$ in $A \bowtie^{\alpha,\beta} (I, I')$ one gets $s(\alpha(a) + i_1)(\alpha(A) + I)(\alpha(b) + i_2)s = 0$. By the regularity of s then $(\alpha(a) + i_1)(\alpha(A) + I)(\alpha(b) + i_2) = 0.$

Similarly, for $0 \neq s' \in I' \cap S'$ by the regularity of s' we can prove that $(\beta(a) + i'_1)(\beta(A) + i'_2)$ I')(β (b) + i'_2) = 0. Hence, α (A) + I and β (A) + I' are semicommutative rings.

Theorem 4.2. *Let* A, B and C *be rings*, $\alpha : A \longrightarrow B$ and $\beta : A \longrightarrow C$ *be ring homomorphisms and let* I *and* I ′ *be two ideals of* B *and* C, *respectively. Then the following hold:*

- (1) If $\alpha(A) + I$ and $\beta(A) + I'$ are semiprime rings, then $A \bowtie^{\alpha,\beta} (I, I')$ is semiprime.
- (2) If A, B and C are semiprime rings and let B and C be semicommutative, then $A \bowtie^{\alpha,\beta}$ (I, I′) *is a semiprime ring.*

Proof. (1) Suppose that $\alpha(A) + I$ and $\beta(A) + I'$ are semiprime rings. We prove that $A \bowtie^{\alpha, \beta}$ (I, I') semiprime ring. Let $(\alpha(a) + i, \beta(a) + i') \in A \bowtie^{\alpha, \beta} (I, I')$. Assume that $(\alpha(a) + i, \beta(a) + i')$ i') $(A \bowtie^{\alpha,\beta} (I, I'))(\alpha(a) + i, \beta(a) + i') = 0$. Then $(\alpha(a) + i)(\alpha(A) + I)(\alpha(a) + i) = 0$ and $(\beta(a) + i')(\beta(A) + I')(\beta(a) + i') = 0$. By hypothesis, $\alpha(a) + i = 0$ and $\beta(a) + i' = 0$, proving (1).

(2) Assume that A, B and C are semiprime rings. We prove that $A \bowtie^{\alpha,\beta} (I, I')$ is semiprime. Let $(\alpha(a) + i, \beta(a) + i') \in A \bowtie^{\alpha, \beta} (I, I')$ with $(\alpha(a) + i, \beta(a) + i')A \bowtie^{\alpha, \beta} (I, I')(\alpha(a) + i')A$

 $i, \beta(a) + i' = 0$ in $A \bowtie^{\alpha, \beta} (I, I')$. Then $(\alpha(a) + i)(\alpha(A) + I)(\alpha(a) + i) = 0$ and $(\beta(a) + i')$ i')($\beta(A) + I'$)($\beta(a) + i'$) = 0. By the assumption, $a = 0$, $\alpha(a) = 0$ and $\beta(a) = 0$. Hence, $i(\alpha(A) + I)i = 0$ and $i'(\beta(A) + I')i' = 0$ and so $i^2 = 0$ and $i'^2 = 0$. By the semicommutative and the semiprimeness of B and C, we have $i = 0$ and $i' = 0$. Thus $\alpha(a) + i = 0$ and $\beta(a) + i' = 0$, proving (2).

Now, we investigate nil-semicommutativity of bi-amalgamated rings. In [\[17\]](#page-8-6), a ring R is called nil-semicommutative if for every $a, b \in Nil(R), ab = 0$ implies $aRb = 0$. Every semicommutative ring is nil-semicommutative. We study the conditions under which $A \bowtie^{\alpha,\beta} (I, I')$ is nil-semicommutative. We start with the following example for motivation.

Example 4.1. Let
$$
A = \mathbb{Z}_2
$$
 and $B = \begin{pmatrix} \mathbb{Z}_2 & 0 \\ 0 & \mathbb{Z}_2 \end{pmatrix}$ and $C = \begin{pmatrix} \mathbb{Z}_2 & 0 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 & 0 \\ 0 & 0 & \mathbb{Z}_2 \end{pmatrix}$ the rings and
\n $I = \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{Z}_2 \end{pmatrix}$ the ideal of B and $I' = \begin{pmatrix} 0 & 0 & \mathbb{Z}_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ the ideal of C.
\nLet $\alpha : A \longrightarrow B$ defined by $\alpha(a) = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$ where $a \in \mathbb{Z}_2$ and $\beta : A \longrightarrow C$ defined by
\n $\beta(a) = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ where $a \in \mathbb{Z}_2$.
\nAlso $A \bowtie^{\alpha,\beta} (I, I') = \left\{ \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix} \right\}$
\n $\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix} \right\}$

is a nil-semicommutative ring.

Theorem 4.3. Let A, B and C be rings, $\alpha : A \longrightarrow B$ and $\beta : A \longrightarrow C$ be two ring homomor*phisms and let* I *and* I ′ *be two ideals of* B *and* C*, respectively and* A *is nil-semicommutative ring. Then the following hold:*

- (1) If $\alpha(A) + I$ and $\beta(A) + I'$ are nil-semicommutative rings, then so is $A \bowtie^{\alpha,\beta} (I, I')$.
- (2) Assume that α and β are monomorphisms and B and C are semicommutatve. If $\alpha(A)+I$ and $\beta(A)+I'$ are nil-semicommutative rings, then $A\Join^{\alpha,\beta}(I,I')$ is a nil-semicommutative.

Proof. (1) Suppose that $\alpha(A) + I$ and $\beta(A) + I'$ are nil-semicommutative rings. Let $(\alpha(a) + I')$ $i_1, \beta(a)+i'_1, (\alpha(b)+i_2, \beta(b)+i'_2)$ be nilpotent and $(\alpha(a)+i_1, \beta(a)+i'_1)(\alpha(b)+i_2, \beta(b)+i'_2)$ $0 \in A \bowtie^{\alpha,\beta} (I, I')$. Then $\alpha(a) + i_1$ and $\alpha(b) + i_2$ are nilpotents, $(\alpha(a) + i_1)(\alpha(c) + i_3)(\alpha(b) + i_2)$ i_2) = 0 for all $\alpha(c) + i_3 \in \alpha(A) + I$ and $\beta(a) + i'_1$ and $\beta(b) + i'_2$ are nilpotents, $(\beta(a) + i'_1)(\beta(c) + i'_2)$ i'_3)($\beta(b) + i'_2$) = 0 for all $\beta(c) + i'_3 \in \beta(A) + I'$. Then $(\alpha(a) + i_1, \beta(a) + i'_1)(\alpha(c) + i_3, \beta(c) + i'_2)$ $i'_3)(\alpha(b)+i_2, \beta(b)+i'_2) = ((\alpha(a)+i_1)(\alpha(c)+i_3)(\alpha(b)+i_2), (\beta(a)+i'_1)(\beta(c)+i'_3)(\beta(b)+i'_2)) = 0$ for all $(\alpha(c) + i_3, \beta(c) + i'_3) \in A \bowtie^{\alpha, \beta} (I, I')$. Hence, $A \bowtie^{\alpha, \beta} (I, I')$ is a nil-semicommutative ring.

(2) Let $(\alpha(a) + i_1, \beta(a) + i'_1)$ and $(\alpha(b) + i_2, \beta(b) + i'_2)$ be nilpotents in $A \bowtie^{\alpha,\beta} (I, I')$ with $(\alpha(a) + i_1, \beta(a) + i'_1)(\alpha(b) + i_2, \beta(b) + i'_2) = 0$. Then $(\alpha(a) + i_1)(\alpha(b) + i_2) = 0$ and $(\beta(a) + i'_1)(\beta(b) + i'_2) = 0$. So $\alpha(a)\alpha(b) = 0$ and $\beta(a)\beta(b) = 0$. Semicommutativity of B and C, we have $(\alpha(a) + i_1)B(\alpha(b) + i_2) = 0$ and $(\beta(a) + i'_1)C(\beta(b) + i'_2) = 0$. In particular, $(\alpha(a) + i_1)(\alpha(A) + I)(\alpha(b) + i_2) = 0$ and $(\beta(a) + i'_1)(\beta(A) + I')(\beta(b) + i'_2) = 0$. Since α, β are monomorphisms, we have $aAb = 0$. It follows that $(\alpha(a) + i_1, \beta(a) + i'_1)(A \bowtie^{\alpha, \beta}$ $(I, I')\big)(\alpha(b) + i_2, \beta(b) + i_2') = 0$. Hence, $A \bowtie^{\alpha, \beta} (I, I')$ is a nil-semicommutative.

Here, weakly semicommutativity of bi-amalgamated rings is investigated under some con-ditions. In [\[16\]](#page-8-14), weakly semicommutative rings were defined and studied. A ring R is called weakly semicommutative if for any $a, b \in R$, $ab = 0$ implies arb is nilpotent for any $r \in R$.

Theorem 4.4. Let A, B and C be rings, $\alpha : A \longrightarrow B$ and $\beta : A \longrightarrow C$ be two ring homomor*phisms and let* I *and* I ′ *be two ideals of* B *and* C*, respectively and* A *is a nil-semicommutative ring. Then the following hold:*

- (1) If $\alpha(A) + I$ and $\beta(A) + I'$ are weakly semicommutative rings, then so is $A \bowtie^{\alpha,\beta} (I, I')$.
- (2) Assume that $I \cap S \neq \emptyset$, where S is the set of all central regular elements of B and $I' \cap S' \neq \emptyset$ where S' is the set of all central regular elements of C. Then $A \bowtie^{\alpha,\beta}$ (I, I') *is a weakly semicommutative ring if and only if* $\alpha(A) + I$ *and* $\beta(A) + I'$ *are semicommutative rings.*
- (3) Assume that $\alpha(A) \cap I = (0)$ and $\beta(A) \cap I' = (0)$. If $A \bowtie^{\alpha,\beta}(I, I')$ is weakly semicom*mutative, then* $\alpha(A) + I$ *and* $\beta(A) + I'$ *are semicommutative rings.*

Proof. (1) Let $(\alpha(a)+i_1, \beta(a)+i'_1), (\alpha(b)+i_2, \beta(b)+i'_2) \in A \bowtie^{\alpha,\beta} (I, I' \text{ with } (\alpha(a)+i_1, \beta(a)+i'_1)$ $i'_1)(\alpha(b) + i_2, \beta(b) + i'_2) = 0$. Then $(\alpha(a) + i_1)(\alpha(b) + i_2) = 0$ and $(\beta(a) + i'_1)(\beta(b) + i'_2) = 0$. Suppose $(\alpha(a) + i_1)(\alpha(c) + i_3)(\alpha(b) + i_2)$ and $(\beta(a) + i'_1)(\beta(c) + i'_3)(\beta(b) + i'_2)$ are nilpotents for each $c \in A$ and $i_3 \in I$, $i'_3 \in I'$. If $((\alpha(a) + i_1)(\alpha(c) + i_3)(\alpha(b) + i_2))^s = 0$ and $((\beta(a) + i'_1)(\beta(c) + i'_3)(\beta(b) + i'_2))^r = 0$ for some positive integers s and r and let $m = max\{s, r\}$. Then $((\alpha(a) + i_1, \beta(a) + i'_1)(\alpha(c) + i_3, \beta(c) + i'_3)(\alpha(b) + i_2, \beta(b) + i'_2))^{m} = 0$. So $A \bowtie^{\alpha,\beta} (I, I')$ is weakly semicommutative.

(2) Let $(\alpha(a) + i_1)(\alpha(b) + i_2) = 0$ in $\alpha(A) + I$ and $0 \neq s \in I \cap S$. Then $(s(\alpha(a) + i_1))$ $(i_1), 0)(s(\alpha(b) + i_2), 0) = 0$. Hence $(s(\alpha(a) + i_1), 0)(\alpha(c) + i_3, \beta(c) + i'_3)(s(\alpha(b) + i_2), 0)$ is nilpotent in $A \bowtie^{\alpha,\beta} (I, I'$ for all $\alpha(c) + i_3 \in \alpha(A) + I$ and $\beta(c) + i'_3 \in \beta(A) + I'$. The element s being central implies that $s^2((\alpha(a) + i_1)(\alpha(c) + i_3)(\alpha(b) + i_2))$ is nilpotent for all $\alpha(c)+i_3 \in \alpha(A)+I$. Thus $\alpha(A)+I$ is weakly semicommutative and let $(\beta(a)+i'_1)(\beta(b)+i'_2)$ 0 in $\beta(A) + I'$ and $0 \neq' s \in I' \cap S'$. Then $(0, s'(\beta(a) + i'_1))(0, s'(\beta(b) + i'_2)) = 0$. Hence $(0, s'(\beta(a) + i'_1))(\alpha(c) + i_3, \beta(c) + i'_3)(0, s'(\beta(b) + i'_2))$ is nilpotent in $A \bowtie^{\alpha,\beta} (I, I')$ for all $\alpha(c) + i_3 \in \alpha(A) + I$ and $\beta(c) + i'_3 \in \beta(A) + I'$. The element s' being central implies that $s'^2((\beta(a)+i'_1)(\beta(c)+i'_3)(\beta(b)+i'_2))$ is nilpotent for all $\beta(c)+i'_3 \in \beta(A)+I'$. Thus $\beta(A)+I'$ is weakly semicommutative.

(3) Assume that $\alpha(A) + I = (0)$ and $\beta(A) + I' = (0)$ and $A \bowtie^{\alpha,\beta} (I, I')$ is weakly semicommutative. We prove $\alpha(A) + I$ and $\beta(A) + I'$ are weakly semicommutative. Let $\alpha(a) + i_1, \alpha(b) + i_2 \in$ $\alpha(A) + I$ with $(\alpha(a) + i_1)(\alpha(b) + i_2) = 0$. Then $\alpha(a)\alpha(b) \in \alpha(A) \cap I = (0)$ implies $\alpha(a)\alpha(b) = 0$ and let $\beta(a) + i'_1$, $\beta(b) + i'_2 \in \beta(A) + I'$ with $(\beta(a) + i'_1)(\beta(b) + i'_2) = 0$. Then $\beta(a)\beta(b) \in \beta(A) \cap I' = (0)$ implies $\beta(a)\beta(b) = 0$. Hence $(\alpha(a) + i_1, \beta(a) + i'_1)(\beta(b) + i_2, \beta(b) + i'_2)$ i_2') = 0. Weakly semicommutativity of $A \bowtie^{\alpha,\beta} (I, I')$ implies that $(\alpha(a) + i_1, \beta(a) + i'_1)A \bowtie^{\alpha,\beta}$ $(I, I')(\beta(b) + i_2, \beta(b) + i'_2)$ is nil. It follows that $(\alpha(a) + i_1)(\alpha(A) + I)(\alpha(b) + i_2)$ is nil and $(\beta(a) + i'_1)(\beta(A) + I')(\beta(b) + i'_2)$ is nil. So $\alpha(A) + I$ and $\beta(A) + I'$ are semicommutative rings.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

[1] D. D. ANDERSON, *Commutative rings*, Springer, New York, 2006.

- [2] A. ARULDOSS and C. SELVARAJ, SITT-ring properties in bi-amalgamated rings along ideals, *Gulf J. Math*., 15 (2023), No.1, pp. 93-108.
- [3] A. ARULDOSS, C. SELVARAJ and BIJAN DAVVAZ, Coherence properties in bi-amalgamated modules, *Gulf J. Math*., 14 (2023), No. 1, pp. 13-24. [https://doi.org/10.56947/gjom.](https://doi.org/10.56947/gjom.v14i1.913) [v14i1.913](https://doi.org/10.56947/gjom.v14i1.913).
- [4] A. ARULDOSS and C. SELVARAJ, Weakly SIT-ring properties in bi-amalgamated rings along ideals, *Vietnam J. Math*., (2023). <https://doi.org/10.1007/s10013-023-00630-6>
- [5] A. ARULDOSS and C. SELVARAJ, Bi-amalgamated algebra with (n, p) -weakly clean like properties, *Ratio Mathematica*, 47 (2023), pp. 324-331.
- [6] M. B. BOISEN and P. B. SHELDON, CPI-extension, Over rings of integral domains with special prime spectrum, *Canad. J. Math*., 29 (1977), pp. 722-737.
- [7] W. CHEN, S. CUI, On weakly semicommutative rings, *Commun. Math. Res*., 27 (2011), No. 2 , pp. 179-192.
- [8] M. D'ANNA, A construction of Gorenstein rings, *J. Algebra*, 306(2006), No. 2, pp. 507-519.
- [9] M. D'ANNA and M. FONTANA, The amalgamated duplication of a ring along a multiplicativecanonical ideal, *Ark. Mat*., 45 (2007), No. 2 , PP. 241-252.
- [10] M. D'ANNA and M. FONTANA, An amalgamated duplication of a ring along an ideal: the basic properties, *J. Algebra Appl*., 6 (2007), No. 3 , PP. 443-459.
- [11] M. D'ANNA, C. A. FINOCCHIARO, and M. FONTANA, Amalgamated algebras along an ideal, *Comm. Algebra Appl*., Walter De Gruyter (2009), pp. 241–252.
- [12] M. D'ANNA, C. A. FINOCCHIARO, and M. FONTANA, Properties of chains of prime ideals in amalgamated algebras along an ideal, *J. Pure Appl. Algebra*, 214 (2010), pp. 1633-1641.
- [13] J.L. DORROH, Concerning adjunctions to algebras, *Bull. Amer. Math. Soc*., 38 (1932), pp. 85-88.
- [14] H. KOSE, Y. KURTULMAZ, B. UNGOR, and A. HARMANCI, Semicommutativity of amalgamated rings, *Journal Math. Research Appl*., 38 (2018), No. 4 , pp. 366-376.
- [15] S. KABBAJ, K. LOUARTITI and M. TAMEKKENTE, Bi-amalgmeted algebras along ideals, *J. Commut. Algebra*, 9 (2017), No. 1 , pp. 65-87.
- [16] L. LI, L. WANG and Z. LIU, On a generalization of semicommutative rings, *Taiwanese J. Math*., 11 (2007), No. 5, pp. 1359-1368.
- [17] R. MOHAMMADI, A. MOUSSAVI and M. ZAHIRI, On nil-semicommutative rings, *Int. Electron. J. Algebra*, 11 (2012), pp. 20-37.
- [18] W. K. NICHOLSON, Semiregular modules and rings, *Canad. J. Math*., XXVIII, (1976), pp. 1105- 1120.
- [19] W. K. NICHOLSON, Lifting idempotents and exchange rings, *Trans. Amer. Math. Soc*., 229 (1977), pp. 269-278.
- [20] N. FARSHAD, S. ALI SAFARISABET and A. MOUSSAVI, Amalgamated rings with clean-type properties, *Hacet. J. Math. Stat*., 50 (2021), No. 5 , pp. 1358 – 1370. DOI : 10.15672/hujms.676342.
- [21] M. NAGATA, *Local Rings*, Interscience, New York, 1962.
- [22] Z. YING, T. KOSAN and Y. ZHOU, Rings in which every element is a sum of two tripotents, *Canad. Math. Bull*, 59 (2016), No. 3, pp. 661-672.