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1. INTRODUCTION

Throughout this paper, R denotes an associative ring with identity. For a ring R, we will
use J(R), Id(R), T r(R) and C(R), to denote the Jacobson radical, the set of idempotents, the
set of all tripotents and the centre of R, respectively.

In 2016, Zhiling Ying et.all [22] investigated that rings for which every element is a sum of
an idempotent and a tripotent that commute.

Let A and B be two commutative rings with unity, let I be an ideal of B and let α : A → B
be a ring homomorphism. In this setting, we can consider the following subring of A×B:

A ▷◁α I := {(a, α(a) + i) | a ∈ A, i ∈ I}
called the amalgamation of A with B along I with respect to α (introduced and studied by
D’Anna, Finocchiaro, and Fontana in [11, 12]). This construction is a generalization of the
amalgamated duplication of a ring along an ideal (introduced and studied by D’Anna and
Fontana in [8, 9, 10]).

Let ϕ1 : A −→ C, ϕ2 : A −→ C and α : A −→ B be ring homomorphisms. In the
aforementioned papers [11, 12], the authors studied amalgamated algebras within the frame of
pullback ϕ1 × ϕ2 such that ϕ1 = ϕ2 ◦ α [11, Proposition 4.2 and 4.4]. In this motivation, the
authors created the new constructions, called bi-amalgamated algebras which arise as pullbacks
ϕ1 × ϕ2 such that the following diagram of ring homomorphims

C D

A B
α

β ϕ1
ϕ2

is commutative with ϕ1 ◦ πB(ϕ1 ×ϕ2) = ϕ1 ◦α(A), where πB denotes the canonical projection
of B × C over B. Namely, let α : A −→ B and β : A −→ C be two ring homomorphisms
and let I and I ′ be two ideals of B and C, respectively, such that α−1(I) = β−1(I ′). The
bi-amalgamation of A with (B,C) along (I, I ′) with respect to (α, β) is the subring of B × C
given by

A ▷◁α,g (I, I ′) := {(α(a) + i, β(a) + i′)|a ∈ A, (i, i′) ∈ I × I ′}.

A ring R is called semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0. R
is semicommutative if and only if the right (left) annihilator over R is an ideal of R. Every
commutative ring is semicommutative. Therefore, if A and B are commutative, then the ring
A × B is commutative, and so is A ▷◁α I as a subring of A × B. A ring R is called nil-
semicommutative [17], if ab = 0 implies aRb = 0 for every nilpotent elements a, b ∈ R.
Every semicommutative ring is nil-semicommutative. Another version of semicommutativity is
weakly semicommutativity. In [17, 7], weakly semicommutative rings were investigated. The
ring R is called weakly semicommutative if for any a, b ∈ R, ab = 0 implies arb is nilpotent
for any r ∈ R. Clearly, semicommutative rings are weakly semicommutative. There is no
implication between nil-semicommutative rings and weakly semicommutative rings.

In [2, 14], authors have studied semicommutativity of amalgamated rings and SIT-rings of
amalgamated algebra along an ideal. This motivates as we study many ring theoretical proper-
ties of the bi-amalgamation ring A ▷◁α,β (I, I ′).

In this paper, we study many ring theoretical properties of the bi-amalgamation ring A ▷◁α,β

(I, I ′), in the case where the rings are not assumed to be commutative. We give characterizations
for the bi-amalgamation ring A ▷◁α,β (I, I ′) to be SIT-ring, semiregular, semicommutative,
semiprime, nil-semicommutative, weakly semicommutative rings.
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2. SIT-RING PROPERTY IN BI-AMALGAMATED RINGS

We start with a definition and examples of SIT-rings.

Definition 2.1. [22] A ring is said to be a (strong) SIT-ring if every element is a sum of an
idempotent and a tripotent (that commute).

Proposition 2.1. [22] The class of SIT-rings is closed under homomorphic images.

Definition 2.2. Let α : A −→ B and β : A −→ C be two ring homomorphisms and let I
and I ′ be two ideals of B and C, respectively, such that I0 := α−1(I) = β−1(I ′). The bi-
amalgamation of A with (B,C) along (I, I ′) with respect to (α, β) is the subring of (B × C)
given by A ▷◁α,β (I, I ′) := {(α(a) + i, β(a) + i′)|a ∈ A, (i, i′) ∈ I × I ′}.

Following [15], the above definition was introduced and studied by Kabbaj, Louartiti and
Tamekkante in 2013.

Example 2.1. Let A = Z2 and B =

(
Z2 Z2

0 Z2

)
and C =

Z2 0 Z2

0 Z2 0
0 0 Z2

 be rings and

I =

(
0 0
0 Z2

)
an ideal of B and I ′ =

0 0 0
0 0 0
0 0 Z2

 an ideal of C.

Let α : A −→ B defined by α(a) =

(
0 0
0 a

)
, where a ∈ Z2 and β : A −→ C defined by

β(a) =

0 0 0
0 0 0
0 0 a

 where a ∈ Z2.

Then α(A) + I =

{(
0 0
0 0

)
,

(
0 0
0 1

)}
and β(A) + I ′ =

{0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 1

}
.

Hence, α(A) + I and β(A) + I ′ are SIT-rings.

Also, A ▷◁α,g (I, I ′) =

{
(

(
0 0
0 0

)
,

0 0 0
0 0 0
0 0 0

), (

(
0 0
0 0

)
,

0 0 0
0 0 0
0 0 1

),

(

(
0 0
0 1

)
,

0 0 0
0 0 0
0 0 0

), (

(
0 0
0 1

)
,

0 0 0
0 0 0
0 0 1

)

}
is a SIT-ring.

Proposition 2.2. If A ▷◁α,β (I, I ′) is a SIT-ring then α(A) + I and β(A) + I ′ are SIT-rings.

Proof. Clearly, homomorphic image of a SIT-ring is a SIT-ring. Thus, in view of [15, Proposi-
tion 4.1], we have the following isomorphism of rings A▷◁α,β(I,I′)

0×I′
∼= α(A) + I and A▷◁α,β(I,I′)

I×0
∼=

β(A) + I ′. Hence, α(A) + I and β(A) + I ′ are SIT-rings.

Definition 2.3. A ring R is called uniquely SIT-ring if each element in R can be written uniquely
as the sum of an idempotent and a tripotent.

Proposition 2.3. Assume that A is a SIT-ring and
α(A) + I

I
and

β(A) + I ′

I ′
are uniquely SIT-

rings. Then A ▷◁α,β (I, I ′) is a SIT-ring if and only if α(A) + I and β(A) + I ′ are SIT-rings.

Proof. If A ▷◁α,β (I, I ′) is a SIT-ring, then so are α(A) + I and β(A) + I ′. Conversely, assume
that α(A) + I and β(A) + I ′ are SIT-rings. Since A is a SIT-ring, we can write a = e + t,
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where e ∈ Id(A) and t ∈ Tr(A). On the other hand, since α(A) + I is a SIT-ring, α(a) + i =
α(x)+ i1+α(y)+ i2 with α(x)+ i1 and α(y)+ i2 are respectively an idempotent and a tripotent
element of α(A) + I . It is clear that α(x) = α(x) + i1 (resp., α(e)) and α(y) = α(y) + i2

(resp., α(t)), are respectively an idempotent and a tripotent element of
α(A) + I

I
, and we have

α(a) = α(e) +α(t) = α(x) +α(y). Thus, α(e) = α(x) and α(t) = α(y) since
α(A) + I

I
is an

uniquely SIT-ring. So there exist i∗1, i
∗
2 ∈ K such that α(x) = α(e)+i∗1 and α(y) = α(t)+i∗2 and

also since β(A)+I ′ is a SIT-ring, β(a)+i′ = β(x)+i′1+β(y)+i′2 with β(x)+i′1 and β(y)+i′2 are
respectively an idempotent and a tripotent element of β(A)+I ′. It is clear that β(x) = β(x) + i′1
(resp., β(e)) and β(y) = β(y) + i′2 (resp., β(t)) are respectively an idempotent and a tripotent

element of
β(A) + I ′

I ′
, and we have β(a) = β(e) + g(t) = β(x) + β(y). Thus, β(e) = β(x)

and β(t) = β(y) since
β(A) + I ′

I ′
is an uniquely SIT-ring. So there exist i′∗1 , i

′∗
2 ∈ I ′ such that

β(x) = β(e)+i
′∗
1 and β(y) = β(t1)+i

′∗
2 . We have, (α(a)+i, β(a)+i′) = (α(e)+i∗1+i1, β(e)+

i
′∗
1 + i′1) + (α(t1) + i∗2 + i2, β(t1) + i

′∗
2 + i′2), and it is clear that (α(e) + i∗1 + i1, β(e) + i

′∗
1 + i′1)

is an idempotent and (α(t1) + i∗2 + i2, β(t1) + i
′∗
2 + i′2) tripotent elements of A ▷◁α,β (I, I ′).

Proposition 2.4. Let α : A → B and β : A → C be a ring homomorphisms and let (e1) be an
ideal of B generated by the central idempotent element e1 and (e2) be an ideal of C generated
by the central idempotent element e2. Assume that A is a SIT-ring. Then A ▷◁α,β ((e1), (e2)) is
a SIT-ring if and only if α(A) + (e1) and β(A) + (e2) are SIT-ring.

Proof. Suppose that α(A) + (e1) and β(A) + (e2) are SIT rings. In light of Proposition 2.2,
we only have to show that A ▷◁α,β ((e1), (e2)) is a SIT-ring. Let (α(a) + r1e1, β(a) + r2e2) be
an element of A ▷◁α,β ((e1), (e2)) (with a ∈ A, r1 ∈ B and r2 ∈ C). Since A is a SIT-ring,
we can write a = s + t, where s ∈ Id(A) and t ∈ Tr(A) and also since α(A) + (e1) and
β(A) + (e2) are SIT-rings, we can write α(a) + r1e1 = s′ + t′, where s′ ∈ Id(α(A) + (e1))
and t′ ∈ Tr(α(A) + (e1)) and β(a) + r2e2 = s′′ + t′′, where s′′ ∈ Id(β(A) + (e2)) and
t′′ ∈ Tr(β(A) + (e2)). We have (α(a) + r1e1, β(a) + r2e2) = (α(s) + (s′ − α(s))e1, β(s) +
(s′′ − β(s))e2) + (α(t) + (t′ − α(t))e1, β(t) + (t′′ − β(t))e2). On the other hand,

[α(s) + (s′ − α(s))e1]
2 = [α(s)(1− e1) + s′e1]

2

= α(s)(1− e1) + s′e1

= α(s) + (s′ − α(s))e1.

[α(t) + (t′ − α(t))e1]
3 = [α(t)(1− e1) + t′e1]

3

= α(t)(1− e1) + t′e1

= α(t) + (t′ − α(t))e1.

Similarly, β(s) + (s′′ − β(s))e2 is an idempotent of β(A) + (e2) and β(t) + (t′′ − β(t))e2 is a
tripotent of β(A) + (e2). Then, (α(s) + (s′ − α(s))e1, β(s) + (s′′ − β(s))e2) and (α(t) + (t′ −
α(t))e1, β(t)+(t′′−β(t))e2) respectively are an idempotent and tripotent in A ▷◁α,β ((e1), (e2)).
Consequently, A ▷◁α,β ((e1), (e2)) is a SIT-ring, as desired.
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3. SEMIREGULAR PROPERTY IN BI-AMALGAMATED RINGS

Proposition 3.1. [18, Proposition 2.2] The following are equivalent for an element a of a ring
R.

(1) There exists e2 = e ∈ aR such that (1− e)a ∈ J(R).
(2) There exists e2 = e ∈ aR such that a(1− e) ∈ J(R).
(3) There exists a regular element b ∈ R with a− b ∈ J(R).
(4) There exists b ∈ R with bab = b and a− aba ∈ J(R).

By Nicholson [18] , an element a of a ring R is called semiregular, if it satisfies any one of
the above conditions. A ring is a semiregular if each of its elements is semiregular. Nicholson
in [18, Theorem 2.9], shows that a ring R is semiregular if R

J(R)
is von Neumann regular and

idempotents lift modulo J(R). The class of semiregular rings is very large. For example every
von Neumann regular ring is semiregular.

Lemma 3.2. Let a ∈ J(R). Then we have J(A ▷◁α,β (I, I ′)) =
{(α(a) + i, β(a) + i′)|α(a) + i ∈ J(α(A) + I), β(a) + i′ ∈ J(β(A) + I ′)}.

Proposition 3.3. If A ▷◁α,β (I, I ′) is a semiregular, then α(A)+I and β(A)+I ′ are semiregular.

Proof. Note that α(A)+ I and β(A)+ I ′ are homomorphic images of A ▷◁α,β (I, I ′) . Then the
result follows immediately from [18, Corollary 2.3].

Lemma 3.4. If I is a nil ideal of B and I ′ is a nil ideal of C, then J(α(A))+ I ⊆ J(α(A)+ I)
and J(β(A)) + I ′ ⊆ J(β(A) + I ′).

Proof. This was proved in [20, Lemma 4.6].

In view of [18, Corollary 2.3], every homomorphic image of a semiregular ring is semiregular,
so if A is semiregular then α(A) is semiregular.

Theorem 3.5. Let I be a nil ideal of B and I ′ be a nil ideal of C and A be a semiregular ring.
Then A ▷◁α,β (I, I ′) is a semiregular ring.

Proof. Let (α(a) + i, β(a) + i′) ∈ A ▷◁α,β (I, I ′). Since α(a) ∈ f(A) is semiregular and
β(a) ∈ β(A) is semiregular, there exists a von-Neumann regular element b ∈ A with α(a) −
α(b) ∈ J(α(A)) and β(a)−β(b) ∈ J(β(A)). So α(a)−α(b)+i ∈ J(α(A))+I ⊆ J(α(A)+I)
and g(a)− g(b)+ i′ ∈ J(g(A))+ I ′ ⊆ J(β(A)+ I ′), by Lemma 3.4. Thus (α(a)+ i)−α(b) ∈
J(α(A) + I) for a von Neumann regular element α(b) ∈ α(A) + I and (β(a) + i′) − β(b) ∈
J(β(A) + I ′) for a von Neumann regular element β(b) ∈ β(A) + I ′. So for the von Neumann
regular element (α(b), β(b)) ∈ A ▷◁α,β (I, I ′), (α(a) + i, β(a) + i′)− (α(b), β(b)) ∈ J(A ▷◁α,β

(I, I ′)), by the Lemma 3.2 and the result follows.

Corollary 3.6. Let I be a nil ideal of B and I ′ be a nil ideal of C and A be a semiregular ring.
Then α(A) + I and β(A) + I ′ are semiregular rings.

Using [19, Proposition 1.1], we conclude the following.

Proposition 3.7. Let A ▷◁α,β (I, I ′) be an exchange ring. Then α(A) + I and β(A) + I ′ are
exchange rings.

Proof. Note that α(A)+I and β(A)+I ′ are homomorphic images of A ▷◁α,β (I, I ′). The result
is an immediate consequence of [19, Proposition 1.4]

Since by [19, Proposition 1.4], every homomorphic image of an exchange ring is exchange,
if A is an exchange ring then α(A) is an exchange ring.
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Theorem 3.8. Let I be a nil ideal of B, I ′ be a nil ideal of C and A be an exchange ring. Then
A ▷◁α,β (I, I ′) is an exchange ring.

Proof. Let (α(a) + i, β(a) + i′) ∈ A ▷◁α,β (I, I ′). As A is an exchange ring, α(A) and β(A)
are exchange rings. So for (α(e))2 = α(e) ∈ α(A)α(a), α(c) ∈ α(A) and (β(e))2 = β(e) ∈
β(A)β(a), β(c) ∈ β(A), we have (α(1)− α(e))− α(c)(α(1)− α(a)) ∈ J(α(A)) and (β(1)−
β(e)) − β(c)(β(1) − β(a)) ∈ J(β(A)). Then (α(1) − α(e)) − α(c)(α(1) − α(a)) + α(c)i ∈
J(α(A))+I and (β(1)−β(e))−β(c)(β(1)−β(a))+β(c)i′ ∈ J(β(A))+I ′ and hence by Lemma
3.2, (1−α(e))−α(c)(1− (α(a)+ i)) ∈ J(α(A)+ I) and (1−β(e))−β(c)(1− (β(a)+ i′)) ∈
J(β(A)+I ′), for (α(e))2 = α(e) ∈ (α(A)+I)(α(a)+i), (β(e))2 = β(e) ∈ (β(A)+I ′)(β(a)+
i′) and α(c) ∈ α(A) + I, β(c) ∈ β(A) + I ′. Thus for ((α(e), β(e))2 = (α(e), β(e)) ∈ A ▷◁α,β

(I, I ′) and (α(c), β(c)) ∈ A ▷◁α,β (I, I ′), we have ((1, 1)− (α(e), β(e))− (α(c), β(c))((1, 1)−
(α(a) + i, β(a) + i′)) ∈ J(A ▷◁α,β (I, I ′)), by Lemma 3.4 and the result follows.

4. SEMICOMMUTATIVE AND SEMIPRIME PROPERTIES IN
BI-AMALGAMATED RINGS

In this section, we prove that properties of semicommutativity, nil-semicommutativity and
weak semicommutativity in bi-amalgamted rings.

Theorem 4.1. Let A, B and C be rings, α : A −→ B and β : A −→ C be ring homomorphisms
and let I and I ′ be two ideals of B and C, respectively. Then the following hold:

(1) If α(A) + I and β(A) + I ′ are semicommutative rings, then so is A ▷◁α,β (I, I ′).
(2) Assume that I ∩ S ̸= ∅, where S is the set of all central regular elements of B and

I ′∩S ′ ̸= ∅, where S ′ is the set of all central regular elements of C. Then A ▷◁α,β (I, I ′)
is a semicommutative ring if and only if α(A) + I and β(A) + I ′ are semicommutative
rings.

Proof. (1) Note that the class of semicommutative rings is closed under finite products and sub-
rings. This implies (1).

(2) To prove that α(A) + I is semicommutative, let α(a) + i1, α(b) + i2 ∈ α(A) + I with
(α(a) + i1)(α(b) + i2) = 0 and let 0 ̸= s ∈ I ∩ S. Using (s(α(a) + i1), 0)((α(b) + i2)s, 0) = 0
in A ▷◁α,β (I, I ′) one gets s(α(a) + i1)(α(A) + I)(α(b) + i2)s = 0. By the regularity of s then
(α(a) + i1)(α(A) + I)(α(b) + i2) = 0.
Similarly, for 0 ̸= s′ ∈ I ′ ∩ S ′ by the regularity of s′ we can prove that (β(a) + i′1)(β(A) +
I ′)(β(b) + i′2) = 0. Hence, α(A) + I and β(A) + I ′ are semicommutative rings.

Theorem 4.2. Let A, B and C be rings, α : A −→ B and β : A −→ C be ring homomorphisms
and let I and I ′ be two ideals of B and C, respectively. Then the following hold:

(1) If α(A) + I and β(A) + I ′ are semiprime rings, then A ▷◁α,β (I, I ′) is semiprime.
(2) If A, B and C are semiprime rings and let B and C be semicommutative, then A ▷◁α,β

(I, I ′) is a semiprime ring.

Proof. (1) Suppose that α(A) + I and β(A) + I ′ are semiprime rings. We prove that A ▷◁α,β

(I, I ′) semiprime ring. Let (α(a)+i, β(a)+i′) ∈ A ▷◁α,β (I, I ′). Assume that (α(a)+i, β(a)+
i′)(A ▷◁α,β (I, I ′))(α(a) + i, β(a) + i′) = 0. Then (α(a) + i)(α(A) + I)(α(a) + i) = 0 and
(β(a) + i′)(β(A) + I ′)(β(a) + i′) = 0. By hypothesis, α(a) + i = 0 and β(a) + i′ = 0, proving
(1).
(2) Assume that A, B and C are semiprime rings. We prove that A ▷◁α,β (I, I ′) is semiprime.
Let (α(a) + i, β(a) + i′) ∈ A ▷◁α,β (I, I ′) with (α(a) + i, β(a) + i′)A ▷◁α,β (I, I ′)(α(a) +
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i, β(a) + i′) = 0 in A ▷◁α,β (I, I ′). Then (α(a) + i)(α(A) + I)(α(a) + i) = 0 and (β(a) +
i′)(β(A) + I ′)(β(a) + i′) = 0. By the assumption, a = 0, α(a) = 0 and β(a) = 0. Hence,
i(α(A) + I)i = 0 and i′(β(A) + I ′)i′ = 0 and so i2 = 0 and i′2 = 0. By the semicommutative
and the semiprimeness of B and C, we have i = 0 and i′ = 0. Thus α(a) + i = 0 and
β(a) + i′ = 0, proving (2).

Now, we investigate nil-semicommutativity of bi-amalgamated rings. In [17], a ring R is
called nil-semicommutative if for every a, b ∈ Nil(R), ab = 0 implies aRb = 0. Every semi-
commutative ring is nil-semicommutative. We study the conditions under which A ▷◁α,β (I, I ′)
is nil-semicommutative. We start with the following example for motivation.

Example 4.1. Let A = Z2 and B =

(
Z2 0
0 Z2

)
and C =

Z2 0 Z2

0 Z2 0
0 0 Z2

 the rings and

I =

(
0 0
0 Z2

)
the ideal of B and I ′ =

0 0 Z2

0 0 0
0 0 0

 the ideal of C.

Let α : A −→ B defined by α(a) =

(
0 0
0 a

)
where a ∈ Z2 and β : A −→ C defined by

β(a) =

0 0 a
0 0 0
0 0 0

 where a ∈ Z2.

Also A ▷◁α,β (I, I ′) =

{
(

(
0 0
0 0

)
,

0 0 0
0 0 0
0 0 0

), (

(
0 0
0 0

)
,

0 0 1
0 0 0
0 0 0

),

(

(
0 0
0 1

)
,

0 0 0
0 0 0
0 0 0

), (

(
0 0
0 1

)
,

0 0 1
0 0 0
0 0 0

)

}
is a nil-semicommutative ring.

Theorem 4.3. Let A, B and C be rings, α : A −→ B and β : A −→ C be two ring homomor-
phisms and let I and I ′ be two ideals of B and C, respectively and A is nil-semicommutative
ring. Then the following hold:

(1) If α(A) + I and β(A) + I ′ are nil-semicommutative rings, then so is A ▷◁α,β (I, I ′).
(2) Assume that α and β are monomorphisms and B and C are semicommutatve. If α(A)+I

and β(A)+I ′ are nil-semicommutative rings, then A ▷◁α,β (I, I ′) is a nil-semicommutative.

Proof. (1) Suppose that α(A) + I and β(A) + I ′ are nil-semicommutative rings. Let (α(a) +
i1, β(a)+i′1), (α(b)+i2, β(b)+i′2) be nilpotent and (α(a)+i1, β(a)+i′1)(α(b)+i2, β(b)+i′2) =
0 ∈ A ▷◁α,β (I, I ′). Then α(a) + i1 and α(b) + i2 are nilpotents, (α(a) + i1)(α(c) + i3)(α(b) +
i2) = 0 for all α(c)+i3 ∈ α(A)+I and β(a)+i′1 and β(b)+i′2 are nilpotents, (β(a)+i′1)(β(c)+
i′3)(β(b) + i′2) = 0 for all β(c) + i′3 ∈ β(A) + I ′. Then (α(a) + i1, β(a) + i′1)(α(c) + i3, β(c) +
i′3)(α(b)+i2, β(b)+i′2) = ((α(a)+i1)(α(c)+i3)(α(b)+i2), (β(a)+i′1)(β(c)+i′3)(β(b)+i′2)) = 0
for all (α(c) + i3, β(c) + i′3) ∈ A ▷◁α,β (I, I ′). Hence, A ▷◁α,β (I, I ′) is a nil-semicommutative
ring.
(2) Let (α(a) + i1, β(a) + i′1) and (α(b) + i2, β(b) + i′2) be nilpotents in A ▷◁α,β (I, I ′) with
(α(a) + i1, β(a) + i′1)(α(b) + i2, β(b) + i′2) = 0. Then (α(a) + i1)(α(b) + i2) = 0 and
(β(a) + i′1)(β(b) + i′2) = 0. So α(a)α(b) = 0 and β(a)β(b) = 0. Semicommutativity of B
and C, we have (α(a) + i1)B(α(b) + i2) = 0 and (β(a) + i′1)C(β(b) + i′2) = 0. In particular,
(α(a) + i1)(α(A) + I)(α(b) + i2) = 0 and (β(a) + i′1)(β(A) + I ′)(β(b) + i′2) = 0. Since
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α, β are monomorphisms, we have aAb = 0. It follows that (α(a) + i1, β(a) + i′1)(A ▷◁α,β

(I, I ′))(α(b) + i2, β(b) + i′2) = 0. Hence, A ▷◁α,β (I, I ′) is a nil-semicommutative.

Here, weakly semicommutativity of bi-amalgamated rings is investigated under some con-
ditions. In [16], weakly semicommutative rings were defined and studied. A ring R is called
weakly semicommutative if for any a, b ∈ R, ab = 0 implies arb is nilpotent for any r ∈ R.

Theorem 4.4. Let A, B and C be rings, α : A −→ B and β : A −→ C be two ring homomor-
phisms and let I and I ′ be two ideals of B and C, respectively and A is a nil-semicommutative
ring. Then the following hold:

(1) If α(A)+ I and β(A)+ I ′ are weakly semicommutative rings, then so is A ▷◁α,β (I, I ′).
(2) Assume that I ∩ S ̸= ∅, where S is the set of all central regular elements of B and

I ′ ∩ S ′ ̸= ∅ where S ′ is the set of all central regular elements of C. Then A ▷◁α,β

(I, I ′) is a weakly semicommutative ring if and only if α(A) + I and β(A) + I ′ are
semicommutative rings.

(3) Assume that α(A)∩ I = (0) and β(A)∩ I ′ = (0). If A ▷◁α,β (I, I ′) is weakly semicom-
mutative, then α(A) + I and β(A) + I ′ are semicommutative rings.

Proof. (1) Let (α(a)+i1, β(a)+i′1), (α(b)+i2, β(b)+i′2) ∈ A ▷◁α,β (I, I ′ with (α(a)+i1, β(a)+
i′1)(α(b) + i2, β(b) + i′2) = 0. Then (α(a) + i1)(α(b) + i2) = 0 and (β(a) + i′1)(β(b) + i′2) = 0.
Suppose (α(a) + i1)(α(c) + i3)(α(b) + i2) and (β(a) + i′1)(β(c) + i′3)(β(b) + i′2) are nilpo-
tents for each c ∈ A and i3 ∈ I, i′3 ∈ I ′. If ((α(a) + i1)(α(c) + i3)(α(b) + i2))

s = 0
and ((β(a) + i′1)(β(c) + i′3)(β(b) + i′2))

r = 0 for some positive integers s and r and let
m = max{s, r}. Then ((α(a)+ i1, β(a)+ i′1)(α(c)+ i3, β(c)+ i′3)(α(b)+ i2, β(b)+ i′2))

m = 0.
So A ▷◁α,β (I, I ′) is weakly semicommutative.
(2) Let (α(a) + i1)(α(b) + i2) = 0 in α(A) + I and 0 ̸= s ∈ I ∩ S. Then (s(α(a) +
i1), 0)(s(α(b) + i2), 0) = 0. Hence (s(α(a) + i1), 0)(α(c) + i3, β(c) + i′3)(s(α(b) + i2), 0)
is nilpotent in A ▷◁α,β (I, I ′ for all α(c) + i3 ∈ α(A) + I and β(c) + i′3 ∈ β(A) + I ′. The
element s being central implies that s2((α(a) + i1)(α(c) + i3)(α(b) + i2)) is nilpotent for all
α(c)+i3 ∈ α(A)+I . Thusα(A)+I is weakly semicommutative and let (β(a)+i′1)(β(b)+i′2) =
0 in β(A) + I ′ and 0 ̸=′ s ∈ I ′ ∩ S ′. Then (0, s′(β(a) + i′1))(0, s

′(β(b) + i′2)) = 0. Hence
(0, s′(β(a) + i′1))(α(c) + i3, β(c) + i′3)(0, s

′(β(b) + i′2)) is nilpotent in A ▷◁α,β (I, I ′) for all
α(c) + i3 ∈ α(A) + I and β(c) + i′3 ∈ β(A) + I ′. The element s′ being central implies that
s′2((β(a)+ i′1)(β(c)+ i′3)(β(b)+ i′2)) is nilpotent for all β(c)+ i′3 ∈ β(A)+ I ′. Thus β(A)+ I ′

is weakly semicommutative.
(3) Assume that α(A)+I = (0) and β(A)+I ′ = (0) and A ▷◁α,β (I, I ′) is weakly semicommu-
tative. We prove α(A)+I and β(A)+I ′ are weakly semicommutative. Let α(a)+i1, α(b)+i2 ∈
α(A) + I with (α(a) + i1)(α(b) + i2) = 0. Then α(a)α(b) ∈ α(A) ∩ I = (0) implies
α(a)α(b) = 0 and let β(a) + i′1, β(b) + i′2 ∈ β(A) + I ′ with (β(a) + i′1)(β(b) + i′2) = 0. Then
β(a)β(b) ∈ β(A)∩I ′ = (0) implies β(a)β(b) = 0. Hence (α(a)+i1, β(a)+i′1)(β(b)+i2, β(b)+
i′2) = 0. Weakly semicommutativity of A ▷◁α,β (I, I ′) implies that (α(a)+ i1, β(a)+ i′1)A ▷◁α,β

(I, I ′)(β(b) + i2, β(b) + i′2) is nil. It follows that (α(a) + i1)(α(A) + I)(α(b) + i2) is nil and
(β(a) + i′1)(β(A) + I ′)(β(b) + i′2) is nil. So α(A) + I and β(A) + I ′ are semicommutative
rings.
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