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2 JACOB GYNTELBERG AND FRANK HANSEN

1. I NTRODUCTION

The notion of contextuality in human cognition is a very appealing idea that most people will
accept as a guiding principle when it comes to modeling decision making or other cognitive
processes. It is therefore surprising that the analytical apparatus commonly used overwhelm-
ingly is tuned to an artificial situation, where human subjects are assumed the ability to accu-
rately perform global analysis before arriving at a conclusion. This is most notably the case
when human behavior is modeled using the classical concepts of a state space and a probability
distribution.

In [10] the second author explored the use of a lattice of projections to model events and the
use of “density matrices” to generate probabilities. It turns out that these techniques allow for a
natural way of representing contextuality, and in the present paper, which is based on the earlier
papers [8] and [9], we use these ideas to develop a new axiomatic theory of subjective expected
utility. A decision maker is only able to make informed decisions based on classical notions of a
state space and a probability distribution in a given context. The preferences over acts defined in
different contexts are only loosely knit together by few and natural conditions. Nevertheless, the
surprising mathematical tool contained in Gleason’s theorem allows for a common description
in term of a single density matrix generating each probability distribution in every given context.

We assume, similar to Savage, that the decision maker facing the “grand world”, for each
group of related decisions, creates a “small world” or local state space of only those events
which are considered relevant in the given context. This may be interpreted as a cognitive
process, where, before a decision is taken, it is grouped together with other decisions in a small
and more manageable world. Events belonging to a local state space are in our model only
risky, while Knightian uncertainty is related to the comparison of events across different local
state spaces. In each local state space we rely on the axioms in [4] together with an additional
axiom which lead to a Savage-type expected utility description. The application of Fishburn’s
axioms is not crucial to the theory, but Fishburn’s generalization of the Savage theory ensures
that the decision maker is able to make decisions by taking into account objective probabilities
in the same way as suggested in [28] for game theory and only assign subjective probabilities to
the (local) states on which the acts are defined. In order to lift the local resolutions of utility and
probability to the grand world and there obtain a description in term of a single density matrix,
we introduce two additional axioms which put relatively mild restrictions on preferences across
local state spaces.

An important innovation is that we allow the decision maker to create and use a subjective set
of events that do not (necessarily) have counterparts in the physical world. The underlying idea
is that the decision maker creates local state spaces from a (global) set of subjective events which
may be unaccessible to direct measurements, see also [17]. The proposition that a decision
maker creates small worlds from the set of all possible events was already discussed in [23].
Savage however only considered “small worlds” created by the partitioning of a state space,
and this way of integrating the local worlds into the grand world tacitly put assumptions on the
decision maker’s preferences that essentially lead to a description not different from what is
obtained by using a single state space with a probability distribution.

Both the classical state space formalism and our theory based on a subjective lattice of events
lead to expected subjective utility theories with separation between subjective probability and
utility. But it is important to realize that the separation only applies to models satisfying the
full set of specified axioms. In contrast, if one considers an experiment with only a limited
number of acts to consider, then both frameworks allow non-equivalent models consistent with
the preferences revealed in the coarse experiment. An implication of this observation is that
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EXPECTED UTILITY WITH SUBJECTIVE EVENTS 3

additional questions put to the decision maker in a coarse experiment may be answered in non-
unique ways without compromising consistency. Additional questions may therefore lead to
non-isomorphic models with different resolutions of subjective probability and utility that still
are consistent with the preferences revealed in the initial (coarse) experiment.

One can view our theory as a way to capture Savage’s notion of a small world in a way flexible
enough to allow for the introduction of a notion of uncertainty aversion. One may alternatively
view our paper as a generalization of existing models of state-dependent utilities where, as is
pointed out in [24], local or small world acts can be ranked in a consistent manner in the grand
world by multiplication by suitable constants.

This phenomenon may be even more pronounced in our model as demonstrated in Example
6.1 where the two-color Ellsberg experiment is studied. In this example we present different
assignments of projections to events all leading to an accurate representation of the observed
preferences, but with different subjective probabilities and different levels of uncertainty aver-
sion. This finding may be attributed to the lack of information provided by a coarse experiment
that does not reveal all aspects of the decision makers preferences.

The standard expected utility model is presented in section 2, and the notion of an event
space is introduced in section 3. The preference relations in the “grand world” are discussed in
subsection 3.2. In section 4 the main representation result is proved and a measure of uncertainty
aversion is introduced. We reconsider the Ellsberg paradox, in our framework, in section 5.
Finally, we compare the approach taken in this paper with the literature in section 6.

2. THE STANDARD EXPECTED UTILITY MODEL

The standard subjective expected utility model is well-known to most readers, but since the
underlying assumptions come in slightly different versions we shall take the effort to specify
the axioms underpinning our use of the model. Here we rely on Fishburn’s rendition of the
Luce-Krantz axioms for two reasons. First, we make sure that a decision maker uses the utility
function provided by the subjective expected utility theorem to evaluate also objective lotteries
not associated with acts. This is nicely provided for in Fishburn’s setup and is used in our
analysis across local state spaces. Secondly, Fishburn’s setup elucidates the non-uniqueness of
the standard model in fairly general situations.

Definition 2.1. An act (basic act) is a measurable mapx : Ω → C defined on a state spaceΩ
equipped with aσ-algebraE , whereC is the set of consequences. The elements inE are called
events, and the set of non-empty events is denoted byE ′.

The set of consequences is equipped with an affine structure and is convex.

Definition 2.2. We consider for any consequencec ∈ C and any eventA the constant actc
defined by settingc(A) = c for every eventA.

Some authors see it as a problem if there are too many constant acts. The reason is that some
consequences may be so dire, that it is inconceivable that they may be chosen regardless of the
obtaining events. These kind of considerations will be ignored and may at most limit the usage
of the theory.

Definition 2.3. A convex combination of (basic) actsx1, . . . , xn given by

x(s) =
n∑

i=1

tixi(s),

whereti ≥ 0 andt1+· · ·+tn = 1, is called amixed act.The factorsti are sometimes interpreted
as probabilities.
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4 JACOB GYNTELBERG AND FRANK HANSEN

Convex combinations of mixed acts are again naturally interpreted as mixed acts. The set of
mixed acts is a mixture set in the sense of [11]. A basic actx may be thought of as a mixed act
that assigns probability 1 tox.

Definition 2.4. A mixed conditional actx|A is the restrictionx : A → C of a mixed actx to an
eventA ∈ E ′.

Let X denote a non-empty convex set of mixed acts (here we simplify Fishburns’s model
slightly). The primary datum in Fishburn’s version of the standard model is a binary preference
relation� overL = {x|A | x ∈ X, A ∈ E ′} that satisfies the following axioms:

(i) Totality : For allx|A andy|B we have eitherx|A � y|B or y|B � x|A.
(ii) Transitivity : If x|A � y|B andy|B � z|G thenx|A � z|G.

A total and transitive order relation is also called aweak ordering.
(iii) Archimedean continuity: The sets

{t ∈ [0, 1] | (tx + (1− t)y)|A � z|B} and {t ∈ [0, 1] | z|B � (tx + (1− t)y)|A}
are closed for arbitraryx, y, z ∈ X andA, B ∈ E ′.

(iv) Mixture indifference : If x|A ∼ z|B andy|A ∼ w|B then

1

2
x|A +

1

2
y|A ∼

1

2
z|B +

1

2
w|B

for arbitraryx, y, z, w ∈ X andA, B ∈ E ′.
(v) Averaging condition: If A ∩B = ∅ andx|A � x|B then

x|A � x|A∪B � x|B
for x ∈ X andA, B ∈ E ′.

(vi) Non-degeneracy: There existx, y ∈ X such thatx � y.
(vii) Weak act richness: If A ∩B = ∅ then

x|A � x|B and y|B � y|A
for some actsx andy in X.

(viii) Strong act richness: If A, B andC are mutually disjoint, and if there is an actx ∈ X
such thatx|A ∼ x|B then there is an acty ∈ X such that exactly two of the actsy|A, y|B,
andy|C are equivalent.

It is a main feature of the model that the decision maker only need to have preferences over
a restricted setX of mixed acts and their restrictions to the non-empty events. The state space
may be finite, and the set of eventsE may be a “small”σ-algebra on the state space.

Theorem 2.1(Fishburn 1973). Assume that the axioms (i) through (viii) are satisfied. Then
there exists a mapu : L× E ′ → R and for eachA ∈ E ′ a finitely additive probability measure
PA on{A ∩B | B ∈ E} such that

(i) x|A � y|B if and only if u(x|A) > u(y|B)

for all actsx|A andy|B in L× E ′.
(ii) x → u(x|A) is a linear function onX for eachA ∈ E ′.
(iii) PC(A) = PC(B)PB(A),

wheneverA ⊆ B ⊆ C for A ∈ E andB, C ∈ E ′.
(iv) u(x|A∪B) = PA∪B(A)u(x|A) + PA∪B(B)u(x|B)

wheneverx ∈ X, A, B ∈ E ′, andA ∩B = ∅.
The mapu is uniquely defined up to an increasing affine transformation, and the probability

measuresPA are uniquely defined for eachA ∈ E ′.
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The statement in(iv) is extended by induction to

u(x) = u(x|Ω) =
n∑

j=1

u(x|Aj
)P (Aj)

for a (mixed) actx and a finite partitionA1, . . . , An of Ω with eachAj ∈ E ′. If in addition
x =

∑m
i=1 λixi we obtain from(ii) the formula

(2.1) u

(
n∑

i=1

λixi

)
=

m∑
i=1

λi

n∑
j=1

u(xi|Aj
)P (Aj).

This is more flexible than in Savage’s theory. If for examplec ∈ X is the constant act with
consequencec ∈ C then

(2.2) u(c) =
n∑

j=1

u(c|Aj
)P (Aj).

We can therefore model that the constant act of getting an umbrella is more utile when it is
raining than otherwise. But we retain the attractive property, to be used later, that the utility of an
unconditional constant act is the subjectively weighted average of utilities of the corresponding
conditional constant acts. We will eventually add two more axioms to Fishburn’s list. The first
is straightforward although controversial in some settings.

(ix) Richness of constant acts: The set of actsX contains the constant actc associated with
each consequencec ∈ C.

Fishburn’s model allows different acts to be subjectively indistinguishable to the decision
maker. Consider an (unconditional) actx with finite many consequencesc1, . . . , cn and set
Aj = {s ∈ Ω | x(s) = cj} for j = 1, . . . , n. The corresponding constant acts (also denoted by
c1, . . . , cn) are inX by axiom (ix), hence the mixed act

x̃ =
n∑

j=1

P (Aj)cj

is also inX, sinceX is a convex set. The two actsx andx̃ are subjectively indistinguishable to
the decision maker. Indeed,x̃ is an objective lottery between the consequencesc1, . . . , cn with
probabilitiesP (A1), . . . , P (An), and this is exactly howx is perceived by the decision maker
who subjectively assigns the same probabilitiesP (A1), . . . , P (An) to the eventsA1, . . . , An

with outcomesc1, . . . , cn.
It seems natural to assume that the decision maker is indifferent between two acts which are

subjectively indistinguishable.

(x) Equivalence: Subjectively indistinguishable acts are equivalent.

It is worthwhile to discuss whether such a condition is behavioral or functional. We would
argue that it is behavioral since the decision maker knows by his own perceptions whether two
given acts are indistinguishable. It is only an outside observer that need to calculate probabilities
before it can be established analytically whether two acts are subjectively indistinguishable to
the decision maker.

The equivalence axiom (x) states that the two actsx andx̃ considered above are equivalent.
The utility of x is given by

u(x) =
n∑

j=1

u(x|Aj
)P (Aj)
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6 JACOB GYNTELBERG AND FRANK HANSEN

according to (2.1), and the utility of̃x is given by

ũ(x) =
n∑

j=1

u(x̃|Aj
)P (Aj)

=
n∑

j=1

u

(
n∑

i=1

P (Ai)ci

∣∣∣
Aj

)
P (Aj)

=
n∑

j=1

n∑
i=1

P (Ai)u(ci|Aj
)P (Aj)

=
n∑

i=1

u(ci)P (Ai),

where we first used the linearity(ii) and then (2.2). The equivalence axiom thus leads to the
formula

(2.3) u(x) =
n∑

i=1

u(ci)P (Ai).

But this is exactly Savage’s expected utility function where the (state independent) utility of
consequences are weighted with the subjective probabilities of the events leading to the con-
sequences. Fishburn [4] shows that the subjective probabilities are not necessarily uniquely
determined if the strong act richness axiom(viii) is dropped from the list. We finally introduce
the following axiom that only serves to facilitate subsequent proofs.

(xi) Certainty equivalent: To each act inX there is an equivalent constant act.

3. SUBJECTIVE EVENTS AS A LATTICE OF PROJECTIONS

We are now ready to introduce the subjective set of events which we model as a lattice of
projections. We demonstrate that a lattice of projections satisfies the same logical rules one
naturally associates with the hierarchy of events.

3.1. The subjective event space.

Definition 3.1 (Subjective event space). An event space is a pair(F , H) of a (separable) Hilbert
spaceH and a familyF of projections onH satisfying:

(i) The zero projection onH (denoted 0) and the identity projection onH (denoted 1) are
both inF .

(ii) 1− P ∈ F for arbitraryP ∈ F .
(iii) The minorant projectionP ∧Q ∈ F for arbitraryP, Q ∈ F .
(iv)

∑
i∈I Pi ∈ F for any family(Pi)i∈I of mutually orthogonal projections inF .

• The familyF inherits the natural (partial) order relationP ≤ Q for projections on a
Hilbert space. Notice that0 ≤ P ≤ 1 for arbitrary eventsP ∈ F .

• We define a bijective mappingP → P⊥ of F onto itself by settingP⊥ = 1 − P. The
eventP⊥ is called the event complementary toP.

• The minorant projectionP ∧ Q is the projection on the intersection of the ranges ofP
andQ. It has the property thatR ≤ P ∧Q for any eventR ∈ F such that bothR ≤ P
andR ≤ Q.

The majorant projectionP ∨ Q is the projection on the closure of the sum of the
ranges ofP andQ. It has the property thatP ∨ Q ≤ R for any eventR ∈ F with
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P ≤ R andQ ≤ R. Since

P ∨Q = 1− (1− P ) ∧ (1−Q)

it follows thatF is closed also under majorant formation.
• Condition(iv) in the definition is a technical requirement which ensures thatF is closed

under arbitrary formation of minorants or majorants. The condition corresponds to the
requirement that aσ-algebra is complete. Thus to any family(Pi)i∈I of events inF
there is a minorant event∧i∈I Pi and a majorant event∨i∈I Pi both contained inF .

A subjective event space possesses a number of properties that are natural even crucial in any
representation of events.

• An event space contains the projections0 and1 corresponding respectively to the vacu-
ous (empty) event and the universal (sure) event.

• There is a partial order relation≤ defined inF such that any eventP ∈ F is placed
between the vacuous and the universal events, that is0 ≤ P ≤ 1. More generally, for
two eventsP andQ in F we considerQ to be a larger, more comprehensive event than
P if P ≤ Q. This corresponds to the statementA ⊆ B for measurable subsetsA and
B of a state space. The interpretation is that we know for sure that the eventQ occurs
(obtains) ifP occurs.

• The joining of two eventsP andQ in F is represented by the projectionP ∧Q and the
union is represented by the projectionP ∨ Q, and these are both included in the event
spaceF . We express this by saying thatF is a lattice. It follows from (iv) thatF is even
closed under the joining or union of arbitrary families of events.

The bijective mappingP → P⊥ = 1 − P of F which associates an event with its comple-
mentary event has the following natural properties:

• P ≤ Q ⇒ Q⊥ ≤ P⊥ for all P, Q ∈ F .
(more comprehensive events have smaller complementary events)

• P ∧ P⊥ = 0 for all P ∈ F .
(the joining between an event and its complementary event is the empty event)

• P ∨ P⊥ = 1 for all P ∈ F .
(the union between an event and its complementary event is the sure event)

• P⊥⊥ = P for all P ∈ F .
(the event complementary to the complementary event to an event is the event itself)

Suppose that the complementary event to a given eventQ is more comprehensive than an-
other eventP, meaning that ifP obtains then so does the complement toQ. If the events are
represented by projections (here also denoted byP andQ) on a Hilbert spaceH, then the con-
dition is equivalent to the requirementP ≤ 1−Q = Q⊥ which means that the ranges ofP and
Q are orthogonal subspaces ofH. For this reason it becomes natural to say that such events are
orthogonal.

Definition 3.2. We say that eventsP, Q ∈ F are mutually exclusive if the minorantP ∧Q = 0,
and we say thatP andQ are orthogonal ifP ≤ Q⊥.

Note that the definition is symmetric inP andQ, that isP ≤ Q⊥ if and only if Q ≤ P⊥.
It readily follows that orthogonal events are mutually exclusive. However, it may happen

that mutually exclusive events are not orthogonal. It is exactly because of this possibility, that
a subjective event space generally differs from a state space. It is demonstrated in [10] that
every state space with aσ-algebra is (under very mild conditions) isomorphic to an event space.
Furthermore, an event space is isomorphic to a state space with aσ-algebra (satisfying the same
mild conditions as in the first result), if and only if mutually exclusive events are orthogonal.
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8 JACOB GYNTELBERG AND FRANK HANSEN

Note that the multiplicative structure plays no direct role in the theory, cf. [10, Theorem 4.3].
Therefore, if an event space only contains commuting projections then it is isomorphic to a state
space with aσ-algebra. On the other hand, if an event space contains non-commuting projec-
tions then it cannot be associated with a state space. In the remainder of the paper we assume,
to avoid unnecessary technical difficulties, that the Hilbert spaceH is of finite dimension. This
corresponds to assuming a finite state space in the standard model.

Given a subjective event space, a local state space or context is a subdivision of the sure event
into the risky events which are pertinent for a particular set of acts. As such it fits neatly into
Savage’s concept of “neglecting some distinctions between states”.

Definition 3.3. A local state space is a set of projections{P1, . . . , Pn} in F which satistfy the
conditionP1+ · · ·+Pn = 1, where1 denotes the identity projection representing the sure event.
The projections in a local state space are thus orthogonal. The set of local state spaces (or small
worlds) is denoted byP (H).

The events (projections) given by a local state space as specified above are mutually exclusive
and their majorant event is the sure event. Therefore exactly one of these events obtains. The
events specified in a local state space thus serve as local states and the obtaining event is the
“true state of nature”. In this wayP (H) becomes a collection of state spaces, each describing a
certain part of the subjective event space(F , H).

3.2. Preferences with a subjective event space.Let C be a common set of consequences.
We consider, for each local state spaceα ∈ P (H), a setLα of (local) acts defined inα with
consequences inC. The set of (global) acts is then defined by setting

L =
⋃

α∈P (H)

Lα

and the “grand world” preferences are specified by a weak order relation onL. The totality
and transitivity conditions earlier considered only in Fishburn’s model (and in any other model
based on a state space formalism) are thus extended to the event spaceL.

(A) Totality : For any pair of acts(α, f) and (β, g) in L we have either(α, f) � (β, g) or
(β, g) � (α, f).

(B) Transitivity : If (α, f) � (β, g) and(β, g) � (γ, h) for acts inL, then(α, f) � (γ, h).

Every act inL is local in the sense that it belongs to a specific local state space but the
preference relation� is given overL. We indicate that a constant act corresponding to a con-
sequencec ∈ C is defined relative to a local state spaceα ∈ P (H) by writing (α, c). Notice
that one may consider an objective lottery with consequencesc = (c1, . . . , cn) and probabilities
p = (p1, . . . , pn) as a mixed act inα and denote it by(α, (c, p)).

We assume that the restriction of� to each set of (local) actsLα satisfies the axioms (i)
through (xi). Notice that the totality and transitivity axioms (i) and (ii) are already satisfied
by restricting the conditions (A) and (B) to a set of local acts. Since every act is equivalent
to a constant act by the certainty equivalent axiom (xi) and constant acts are totally ordered
we realize that the totality axiom (A) is redundant in this situation. We choose to maintain the
axiom for clarity and as a preparation for future developments where the certainty equivalent
axiom may be relaxed.

We introduce two new axioms for the preferences in the “grand world”.

(xii) Indifference: Let (α, (c, p)) and(α, (d, q)) be lotteries between constant acts in a local
state spaceα ∈ P (H). Then

(α, (c, p)) � (α, (d, q)) ⇒ (β, (c, p)) � (β, (d, q))
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for any other local state spaceβ ∈ P (H).

The axiom states that the ordering of lotteries of constant acts does not depend on the local
state space in which they are considered. It may be interpreted as the requirement that an
objective lottery should be equally attractive, independent of the context in which it is available.

(xiii) Separation: Let α, β ∈ P (H) be “small worlds” with a common eventP ∈ α ∩ β. There
exist equivalent actions(α, f) and(β, g) in L and non-equivalent consequencesa, b ∈ C
such that

f(P ) ∼ g(P ) ∼ a and f(Q) ∼ g(R) ∼ b.

for everyQ ∈ α\{P} andR ∈ β\{P}.
In the axiom the common eventP functions as a local state in bothα andβ. The equivalent

actions(α, f) and (β, g) may be interpreted as two bets, one in each of the two local states
spaces, on the local stateP. If P obtains then both bets have outcomes equivalent to conse-
quencea. If P does not obtain then both bets have outcomes equivalent to consequenceb.

4. EXPECTED UTILITY

Before we state and prove the main result, we proceed by demonstrating that the introduced
axioms give rise to a common utility function across all local state spaces. We also demonstrate
that the decision maker assigns subjective probability in a consistent way across different state
spaces.

4.1. Common utility. We first note that for each local state spaceα ∈ P (H), the preference
relation onL induces a preference relation�α onC by setting

c �α d if (α, c) � (α, d)

for consequencesc andd in C. The indifference axiom entails that all of the order relations�α

induced onC in this way are equivalent. We may therefore suppress the subscript in�α and
just write

c � d if (α, c) � (β, d)

for consequencesc andd in C, and small worldsα, β ∈ P (H).
Since axioms(i) through(xi) are assumed there exist, for each “small world”α ∈ P (H), a

subjective probability measureEα and a (local) utility functionuα such that the preferences in
Lα are represented by the (local) subjective expected utility function

(4.1) Uα(α, f) =
n∑

i=1

Eα(Pi)uα(f(Pi)),

cf. equation (2.3).

Lemma 4.1. There exists a common utility functionu : C → R, unique up to an increasing
affine transformation, such that

c � d if and only if u(c) > u(d)

for consequencesc, d ∈ C. For eachα ∈ P (H) the local utility functionuα is an increasing
affine transformation of the common utility functionu.

Proof. Consider acts(α, f), (α, g) ∈ Lα for a small worldα = (P1, . . . , Pn). Since the subjec-
tive expected utility is given by

Uα(α, f) =
n∑

i=1

Eα(Pi)uα(f(Pi)),
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10 JACOB GYNTELBERG AND FRANK HANSEN

we may also considerUα(α, f) as the expected utility of a lottery between constant acts

(α, f(P1)), . . . , (α, f(Pn))

with probabilities(Eα(P1), . . . , Eα(Pn)). Since such a lottery is equally attractive in any other
context we derive that

Uα(α, f) ≥ Uα(α, g) if and only if
n∑

i=1

Eα(Pi)uβ(f(Pi)) ≥
n∑

i=1

Eα(Pi)uβ(g(Pi))

for any otherβ ∈ P (H). This means that the function

V (α, f) =
n∑

i=1

Eα(Pi)uβ(f(Pi))

also represents the ordering inLα. Accordingly,uβ is an increasing affine transformation ofuα

and we may replaceuβ with uα without changing the ordering inLβ.

4.2. Subjective probabilities. It is essential for the theory that a decision maker assigns sub-
jective probability to an event independent of the local state space in which it is considered.

Lemma 4.2. If two “small worlds” α, β ∈ P (H) share a common eventP ∈ α ∩ β then
necessarilyEα(P ) = Eβ(P ), whereEα andEβ are the subjective probability measures, derived
from the decision maker’s preferences, in each of the two local state spaces.

Proof. Consider two state spacesα, β ∈ P (H) with a common eventP ∈ α∩β. We may write
the state spaces on the form

α = {P, Q1, . . . , Qn} and β = {P, R1, . . . , Rm}.

By the separation axiom there exist equivalent actions(α, f) and(β, g) in L and non-equivalent
consequencesa, b ∈ C such that

f(P ) ∼ g(P ) ∼ a and f(Qi) ∼ g(Rj) ∼ b

for i = 1, . . . n andj = 1, . . . ,m. The certainty equivalent axiom(xi) ensures the existence of
constant acts(α, c) and(β, d) such that

u(c) = Uα(α, c) = Uα(α, f)

= Eα(P )u(f(P )) +
n∑

i=1

Eα(Qi)u(f(Qi))

= Eα(P )u(a) + (1− Eα(P ))u(b)

and similarly

u(d) = Uβ(β, d) = Uβ(β, g) = Eβ(P )u(a) + (1− Eβ(P ))u(b).

Since the constant acts(α, c) and(β, d) are equivalent by the (global) transitivity axiom (B),
we conclude thatu(c) = u(d). We have thus writtenu(c) as two convex combinations ofu(a)
andu(b). Sinceu(a) 6= u(b) we conclude thatEα(P ) = Eβ(P ).
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4.3. Main theorem. Lemma 4.2 ensures that we can unambiguously define a function

E : F → [0, 1]

by settingE(P ) = Eα(P ) for any local state spaceα ∈ P (H) containingP. This function has
the property that

E(P1) + · · ·+ E(Pn) = 1

for any sequenceP1, . . . , Pn of projections inF with sumP1 + · · · + Pn = 1. A function
with this property is called a frame function, and such functions were intensitively studied by a
number of authors [18, 7, 26, 21]. The following remarkable result was conjectured by Mackey
and proved by Gleason.

Gleasons’ theorem.LetF be the event space of projections on a (real or complex) separable
Hilbert spaceH of dimension greater than or equal to three, and letF : F → [0, 1] be a frame
function. Then there exists a uniquely defined positive semi-definite trace class operatorh on
H with unit trace such that

F (P ) = Tr(hP )

for anyP ∈ F .

Note that a frame function automatically is continuous by Gleason’s theorem.
We are now ready to state and prove the main result.

Theorem 4.3.Let(F , H) be the event space consisting of all projections on a (real or complex)
Hilbert space of finite dimension greater than or equal to three, letC be a common set of
consequences, and letL be a set of actions. The primitive datum of the utility theory is a weak
ordering� over the setL satisfying the local axioms(i) through(xi) in each local state space
together with the global axioms(xii) and(xiii) . Then there exists a mapu : C → R, unique up
to an increasing affine transformation, and a positive semi-definite operatorh on H with unit
trace such that

(α, f) � (β, g) if and only if U(α, f) > U(β, g)

for arbitrary acts (α, f) and (β, g) in L, where the expected utility functionU is defined by
setting

U(α, f) =
n∑

i=1

Tr(hPi)u(f(Pi))

for any act(α, f) ∈ L whereα = {P1 , . . . , Pn}.

Proof. We first notice that the (local) subjective expected utility function in (4.1) may be written

Uα(α, f) =
n∑

i=1

Eα(Pi)uα(f(Pi))

=
n∑

i=1

E(Pi)u(f(Pi))

=
n∑

i=1

Tr(hPi)u(f(Pi))

= U(α, f),

where we first used Lemma 4.2, the common utility function derived in Lemma 4.1, Gleason’s
Theorem and the definition ofU(α, f) as given in the theorem.
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The acts(α, f) and(β, g) in L are by the certainty equivalent axiom (xi) equivalent to con-
stant acts(α, c) and(β, d) respectively, therefore we obtain

U(α, f) = U(α, c) = u(c) and U(β, g) = U(β, d) = u(d).

Suppose first that(α, f) � (β, g). Since

(α, c) ' (α, f) � (β, g) ' (β, d),

we obtain by the global transitivity axiom (B) that(α, c) � (β, d) and thus

U(α, f) = u(c) > u(d) = U(β, g).

If on the other handU(α, f) > U(β, g) then

(α, f) ' (α, c) � (β, d) ' (β, g),

and thus(α, f) � (β, g). If they were equivalent we could deduceu(c) = u(d), hence neces-
sarily (α, f) � (β, g) and the statement follows.

Note that the statement in the main result entails that the indifference axiom for preferences
across local state spaces is satisfied. The implication is that this axiom must be satisfied in any
expected utility formulation of the given form.

4.4. Measuring uncertainty aversion. In this subsection we introduce a numerical measure
of uncertainty aversion. With this purpose in mind, consider two eventsP andQ in an event
space(F , H) and a decision maker with preferences as given in Theorem 4.3. If the number

ν(P, Q) = E(P ∨Q)− (E(P ) + E(Q))

is positive, this is interpreted as a reflection of the decision maker’s uncertainty aversion. We
may think of an experiment in which a ball is drawn from an urn with an unknown distribution
of red and black balls. The eventP represents the drawing of a red ball while the eventQ
represents the drawing of a black ball. The union (majorant) of the two eventsP ∨Q is the sure
event soE(P ∨ Q) = 1. The decision maker may assign so low probabilities to the individual
events that their sum is less than the probability of the union, and hereby exhibit uncertainty
aversion.

Let nowP1, . . . , Pn be events inF with no further assumptions and consider the number

ν(P1, . . . , Pn) = E(P1 ∨ · · · ∨ Pn)−
n∑

i=1

E(Pi).

This number is obviously less or equal to one and it may be negative. But if the events are part
of a local state space, thenP1 ∨ · · · ∨ Pn = P1 + · · ·+ Pn and thusν(P1, . . . , Pn) = 0.

Definition 4.1. The number

ν = sup{ν(P1, . . . , Pn) | P1, . . . , Pn ∈ F , n = 1, 2, . . . }.

is defined as the decision maker’s uncertainty aversion.

Note that the decision maker’s uncertainty aversionν satisfies0 ≤ ν ≤ 1. It is determined
as the largest possible difference between the weight attached to the union and the sum of the
weights of the individual events. Note that by focusing on the “worst possible” situation the
introduced measure of uncertainty aversion is linked to that of [25].
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Proposition 4.4. Suppose thatF is the event space of all projections on a Hilbert spaceH,
and leth be the positive semi-definite operator (matrix) onH with unit trace such thatE(P ) =
Tr(hP ) for any eventP ∈ F . Then

ν = 1− λmin · dim H,

wheredim H is the finite dimension of the Hilbert spaceH andλmin is the minimal eigenvalue
of the operatorh.

Proof. Consider the expressionν(P1, . . . , Pn) for eventsP1, . . . , Pn. SinceE is additive we
may without loss of generality assume the majorant eventP1 ∨ · · · ∨ Pn = 1 and that all the
constituent projections are one-dimensional. We may then discard events until all remaining
events are needed to maintain the sure event as majorant. In this situationn = dim H and the
remaining events are necessarily projections on a set of basis vectors inH. The supremum is
then obtained by choosing a sequence of bases ofH with each basis vector converging to an
eigenvector for the minimal eigenvalue ofh.

If the decision maker’s uncertainty aversionν = 0, then the proposition entails thath is the
identity operator onH (the identity matrix) divided bydim H, hence

E(P ) =
dim R(P )

dim H
P ∈ F ,

whereR(P ) denotes the range ofP. An uncertainty neutral(ν = 0) decision maker is thus as-
signing likelihood to an event solely according to the dimension of the representing projection.

5. THE ELLSBERG PARADOX

Below we model Ellsberg’s experiment using our framework. We consider two versions, a
two-color variation taken from [19] as well as the original three-color thought experiment in
[2]. This variation was mentioned already in [15].

5.1. Two-color variation. There are two urns, denoted urn1 and urn2. Each urn contains 100
balls that are either white or black. Urn1 contains 49 white balls and 51 black balls while
Urn 2 contains an unspecified assortment of white and black balls. A ball has been picked
randomly from each urn; we call them the1-ball and the2-ball, respectively. The colors of the
chosen balls have not been disclosed. Now we consider two consecutive choice situations or
experiments in which the decision maker must choose either the1-ball or the2-ball. After both
choices have been made, the color will be disclosed. In the first choice situation, a prize is won
if the chosen ball is black. In the second choice situation, the same prize is won if the ball is
white.

With this information, most people will chose the1-ball in the first experiment where the
objective probability of winning is0.51. There is no information available concerning the pro-
portion of balls in urn 2, hence there is objectively complete symmetry between the two colors,
white and black. One might therefore expect that most people would choose the2-ball in the
second experiment since the likelihood that the 1-ball is white is less than half. However, it
turns out that this does not happen overwhelmingly in actual experiments. The decision maker
understands that by choosing the1-ball, he only has a 49 percent chance of winning. But this
chance is “safe” and well understood. The uncertainties incurred are much less clear if the
2-ball is chosen.

The combined likelihood of the two possible outcomes of drawing a ball from urn 2 is con-
sidered to be less than one although the two outcomes are mutually exclusive.
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We may model this behavior by assigning the event “the1-ball is black” to the projectionP
and the event “the1-ball is white” to the projection1− P, where

P =

1 0 0
0 0 0
0 0 0

 .

The two events are thus understood to be complementary. The matrices

Qa =

 a 0 a1/2(1− a)1/2

0 0 0
a1/2(1− a)1/2 0 1− a


Qb =

 b 0 b1/2(1− b)1/2

0 1 0
b1/2(1− b)1/2 0 1− b


are projections for0 ≤ a, b ≤ 1. We assign the “2-ball is black” event toQa and the “2-ball
is white” event toQb for somea, b with 0 < a, b < 1 anda 6= b. With these assignments the
joined event is vacuous, and the union event is the sure event.

Note thatQa andQb are mutually exclusive but not complementary events. In addition, none
of the four projections introduced above are related by inclusion. We are therefore not forcing
the decision maker to assume that the result of one experiment determines the outcome of the
other.

Since the pay-offs are equal in the two experiments the subjective utility is proportional to
the subjective likelihood of the outcomes in both experiments.

As already discussed, the likelihoodE(X) is calculated byE(X) = Tr (hX), whereh
is determined by the decision makers preferences. We use in the example the positive semi-
definite unit trace matrixh defined by

h =

0.49 0 −0.2

0 0.25 0

−0.2 0 0.26

 .

We haveE(P ) = 0.49 andE(1− P ) = 0.51 as anticipated. In addition, we calculate

E(Qa) = 0.26 + 0.23a− 0.4a1/2(1− a)1/2,

E(Qb) = 0.51 + 0.23b− 0.4b1/2(1− b)1/2.

If we choose0 < a < 1/2 ≤ b < 1, then by an elementary calculation we obtain

E[P ] > E[Qa] and E[1− P ] > E[Qb].

The “1-ball is white” is thus preferred to the “2-ball is white” and the “1-ball is black” is pre-
ferred to the “2-ball is black” events as in the experiment. This phenomenon is not possible with
a state space description. Different choices of the parameter valuesa andb (corresponding to
different assignments of events to projections) lead in general to non-isomorphic models. This
is most easily realized by calculating the uncertainty aversionν associated with drawing a ball
from urn 2 which is given by

ν = max{0, E(Qa ∨Qb)− E(Qa)− E(Qb)}.
A small calculation shows thatν for 0 < a < 1/2 ≤ b < 1 may take any value in the
interval [0, c0] where approximatelyc0 = 0.430705. The maximum valuec0 is obtained in
approximatelya = 0.250764 and b = 1/2 with the corresponding subjective probabilities
E(Qa) = 0.144295 andE(Qb) = 0.425.
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It demonstrates that decision makers with different subjective probabilities and different de-
grees of uncertainty aversion may well make identical choices in the two-color experiment that
cannot possibly reveal all aspects of the decision makers behaviour.

5.2. Three-color variation. A decision maker is presented with an urn containing 90 balls. He
is told that 30 of the balls are red and the remaining 60 balls are either black or yellow, but he is
given no information about the distribution of the black and yellow balls. The decision maker
is first asked to state his preferences between three bets, each on the exact color of a single
drawn ball. We may consider the bet on the “red ball” as an act where the local state space only
contains the pertinent events “red ball” and “not red ball”.

The prize is 1 if one wins the bet and 0 otherwise. To simplify further the utility function is
chosen as the identity such that the expected utility of a bet on the “red ball” becomes

E(R) · 1 + E(1−R) · 0 = E(R)

which is simply the expected likelihoodE(R) of the associated eventR. The same approach is
taken to the five other bets.

The decision maker is asked to state his preferences between three bets in which he is given
a choice between two colors of a single drawn ball. All six bets pay out the same amounts,
conditional on the outcome of the draw. In the first choice situation the decision maker is found
to prefer a bet on a “red ball” to a bet on a “black ball” and is indifferent between a bet on a
“black ball” and a bet on a “yellow ball”, that is

(5.1) Bet(R) � Bet(B) ∼ Bet(Y ).

In the second choice situation the decision maker is found to prefer a bet on a “black or yellow
ball” to a bet on either a “red or yellow ball” or a bet on a “black or red ball”, and is indifferent
between these two last bets, that is

(5.2) Bet(B ∨ Y ) � Bet(R ∨ Y ) ∼ Bet(B ∨R).

These preferences display uncertainty aversion in the sense that uncertain events or bets are
seen as less attractive.

To model these preferences, we choose an event space with three projectionsR, B andY
(corresponding to balls of color read, black or yellow respectively) and a likelihood functionE
such that

E(R) > E(B) = E(Y ) and E(B ∨ Y ) > E(R ∨ Y ) = E(B ∨R).

As the decision maker has exact information about the fraction of the red balls, he considers a
bet on the red ball to be a simple lottery described by a probability distribution given the weight
1/3 to the event “the ball is red” and the weight 2/3 to the event “the ball is not red”, and this
last event is recognized to be the same event as “the ball is either black or yellow”. This may
be modeled by letting the event “red ball” be represented by the projectionR and the event “the
ball is not red” or “black or yellow ball” be represented by the projection1−R.

As in the two-color variation, the decision maker is, in the absence of further information, not
able to subdivide the “black or yellow ball” event into two single-color events with a probability
distribution; they belong to different contexts. We capture this by assigning non-orthogonal
projectionsB andY to the two events. See Appendix A for a set of projections which may be
used. Note that the three single color events have minorant 0, that is

R ∧B = 0, B ∧ Y = 0, R ∧ Y = 0,

and the majorant eventB ∨ Y = 1− R. The three two-color eventsB ∨ Y, R ∨ B andR ∨ Y
are thus endogenously given by the lattice operations once the one-color eventsR, B andY are
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specified. In the appendix we chooseh such that

E(R) =
1

3
E(B) =

1

6
E(Y ) =

1

6

E(B ∨ Y ) =
2

3
E(R ∨B) =

1

2
E(R ∨ Y ) =

1

2
.

In this way we obtain the relations

E(R) > E(B) = E(Y ) and E(B ∨ Y ) > E(R ∨ Y ) = E(B ∨R),

and they accurately reflect the preferences in Ellsberg’s paradox.

6. CONCLUDING REMARKS

The Ellsberg paradox has inspired a substantial literature in axiomatic models of decision
making. This literature contains alternative suggestions as to how one can model the appropriate
subjective conditions that characterize self-contained local state spaces such that the decision
maker’s preferences over acts, restricted to any one domain, exhibit probabilistic sophistication.
Focus has been on modeling decision making under uncertainty, while at the same time allowing
for a clear distinction between risk and uncertainty in the spirit of [16]. See [14] and more
recently [31] for comprehensive surveys of this literature. Early contributions include [3] and
[22]. In general, this literature has weakened the Savage/Anscombe-Aumann axioms. Some
authors have chosen to abandon the Savage axioms - in the case of [27] the notion of totality of
preferences - to construct more flexible expected utility models.

6.1. State space models with non-additive probabilities.Our paper is obviously related to
the influential contribution of [25] which models uncertainty and uncertainty aversion in a state
space formalism by assuming that decision makers assign non-additive probabilities to some
events as a reflection of uncertainty aversion. By imposing slightly weaker versions of the
Anscombe-Aumann axioms on preferences, it is possible to capture preferences towards un-
certainty and risk aversion in an expected utility formulation. Clearly, this work demonstrates
that it is possible to formulate expected utility theories which capture a notion of uncertainty-
aversion while still relying on the use of a state space. Several researchers have applied this
type of framework to analyze economic situations. See [20] for a survey of this literature.

The primitive datum in Schmeidler’s theory consists of the space space, the acts, and the pref-
erences, and it is the modelers task to specify this datum in such a way that it adequately reflects
the problem at hand. In our theory projections are used to model events. They are taken from
an infinite source of projections in an event space, but only a few that adequately corresponds
to the problem at hand will be considered by the modeler. The acts and the preferences will
then by Gleason’s theorem, when applicable, provide a unique representation of the likelihood
function and define the measure of uncertainty aversion. The basic problem of choosing states
in a state space or choosing events (projections) in an event space are similar in nature. Our
approach does however have the advantage that it provides an intuitive representation of uncer-
tainty aversion. Secondly, it retains linearity of the grand likelihood functional - even across
local state spaces. Our framework also allows for easy generalizations of a given model by
adding additional local state spaces.

One may consider our model as a bundle of local state spaces loosely knit together by some
global requirements and consistency conditions. Then why do we need the formalism of pro-
jections and an event space? The practical reason is that our theory provides an easy way of
ensuring consistency across small worlds. Once a model is specified and preferences given by
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a utility function and a unit trace positive semi-definite matrix as provided for by Gleason’s
theorem, then we know for sure that the model is consistent.

Our paper is also related to [32] in which a state space model with non-linear capacities
relaxes conditions of richness of the state space in [5], or richness of the outcome space in
[29, 30]. It is argued that structural restrictions are not mere technical but add content of an
unknown nature to models that most naturally have a small finite number of states and outcomes.
In our framework the set of consequences is convex and therefore naturally rich. Thus, even
though the lattice of events may be small, the preferences must be extendable to the full lattice
of projections in order to accommodate Gleason’s theorem, which at present has only been
considered for the full lattice of projections. As such the method proposed in this paper is more
closely related to those suggested by Schmeidler and Gilboa than that of Wakker. We suspect,
however, that the different approaches are genuine alternatives. It seems unlikely that they are
isomorphic in any precise meaning of the word.

6.2. State-dependent utilities.One may interpret our paper as an attempt to generalize mod-
els of state-dependent utilities where, as is pointed out in [24], one can ensure that small world
acts are ranked in a consistent manner within the grand world by multiplying by suitable con-
stants. In this paper we propose a set of axioms which result in a grand likelihood functional
that provides probability distributions in every small world and simultaneously ensures that the
ranking of acts is consistent in the grand world.

A more recent paper [12] also discusses preferences that cannot be expressed by state-
independent utilities. The author motivates his approach by considering the example of a man
who would rather bet on his wife’s survival than on her death, even when the probabilities and
the pay-offs are the same in the two situations. Axioms are proposed that allow for a situation
dependent factorγ that modifies the state independent utilities without compromising the elu-
cidation of subjective probabilities. The example in [12] cannot be described as taking place
in a local state space in our model. One may, however, reconcile our approach with the one in
[12] by modeling the survival or death of the wife as events taking place in different contexts
rather than being complementary events. This would allow for a description, similar to our de-
scription of the two urn variation of Ellsberg’s paradox, where the total subjective probability
of either death or survival is less than one due to uncertainty aversion. Alternatively, one can try
to retain the flexibility in Fishburn’s model [4] by restricting the application of the equivalence
axiom and hence the description in (2.3) to acts where it is meaningful (or acceptable) to the
decision maker to separate the consequences from the events leading to the consequences. This
is accounted for in Fishburn’s setup where the utility of consequences may be conditioned on
an event. However in our setup this flexibility is offset by the equivalence axiom (x) to the ex-
tent that the decision maker is indifferent between acts with the same set of consequences and
associated probabilities. The benefit of axiom (x) is that it allows for a Savage expected utility
representation (2.3) which only involves the utility of unconditioned consequences.

6.3. Models that do not rely on a state space.To our knowledge, there are only a few papers
that do not rely on the explicit presence of a state space. See [6] for a model with subjec-
tive distributions that does not rely on a state space. The authors model preferences over acts
conditional on bets and assume the existence of an outcome-independent linear utility on bets.
Subjective probabilities on outcomes, consistent with expected value maximizing behavior, are
then derived. An axiomatic theory of decision making under uncertainty that dispenses with the
Savage state space is developed in [13]. A subjective expected utility theory, which does not
invoke the notion of states of the world to resolve uncertainty, is formulated. Importantly, this
approach does not rule out that decision makers may mentally construct a state space to help
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organize their thoughts - but it does not require that they do. Thus, the traditional approach may
also be embedded into this framework.

In [1] the authors assume a Savage state space, but provide a set of axioms which allow
for domains of events that arise endogenously according to the preferences of the decision
maker and the manner in which sources of uncertainty are treated. The authors show, given
weak assumptions, that preferences restricted to a domain exhibit probabilistic sophistication.
This allows for an endogenous formulation of a two-stage approach and a distinction between
risk and uncertainty in a setting with a Savage state space. However, as opposed to Savage’s
formulation, the approach taken is to model decisions as generally taking place at the local state
space level, hence leaving the question of consistent extension of decision making across state
spaces unanswered.

Finally, our approach has links to discussions of the foundation of quantum physics; in partic-
ular to quantum mechanical derivations of probability, cf. [33, 34] for a discussion of possible
applications of decision theory in quantum mechanics.
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APPENDIX A. PROJECTIONS FOR MODEL OF ELLSBERG PARADOX

R =

1 0 0
0 0 0
0 0 0

 and 1−R =

0 0 0
0 1 0
0 0 1

 ,

B =

0 0 0
0 1 0
0 0 0

 and Y =

0 0 0
0 1/2 1/2
0 1/2 1/2

 ,

R ∨B =

1 0 0
0 1 0
0 0 0

 and R ∨ Y =

1 0 0
0 1/2 1/2
0 1/2 1/2

 .

h =

1/3 0 0

0 1/6 −1/6

0 −1/6 1/2

 .
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