A-NORMAL OPERATORS IN SEMI HILBERTIAN SPACES

ADEL SADDI

Received 27 February, 2011; accepted 9 June, 2011; published 31 January, 2012.

DEPARTMENT OF MATHEMATICS, COLLEGE OF EDUCATION FOR GIRLS IN SARAT EBEIDAH 61914. ABHA. KING KHALID UNIVERSITY. SAUDI ARABIA
adel.saddi@fsg.rnu.tn

ABSTRACT. In this paper we study some properties and inequalities of A-normal operators in semi-Hilbertian spaces by employing some known results for vectors in inner product spaces. We generalize also most of the inequalities of \((\alpha, \beta)\)-normal operators discussed in Hilbert spaces [7].

Key words and phrases: A-adjoint, Semi-inner product, Normal operators.

2000 Mathematics Subject Classification. Primary 46C05 . Secondary 47A05.
1. Introduction

Throughout this paper \(\mathcal{H} \) denotes a complex Hilbert space with inner product \(\langle \cdot , \cdot \rangle \) and norm \(\| \cdot \| \). \(\mathcal{L}(\mathcal{H}) \) stands the Banach algebra of all bounded linear operators on \(\mathcal{H} \). \(I = I_{\mathcal{H}} \) being the identity operator and if \(V \subset \mathcal{H} \) is a closed subspace, \(P_{V} \) is the orthogonal projection onto \(V \).

For \(T \in \mathcal{L}(\mathcal{H}) \) its range is denoted by \(R(T) \), its null space by \(N(T) \), its adjoint by \(T^{*} \) and its spectrum by \(\sigma(T) \). The numerical range of \(T \) is a subset of the set of complex numbers \(\mathbb{C} \) and it is defined by

\[
W(T) = \{ \langle Tx | x \rangle, \ x \in \mathcal{H}, \ |x| = 1 \}
\]

The spectral radius and the numerical radius and the minimum modulus of \(T \) will be denoted respectively by \(r(T) \) and \(w(T) \) and \(\gamma(T) \). They are defined as \(r(T) = \sup\{ |\lambda|, \ \lambda \in \sigma(T) \} \) and \(w(T) = \sup\{ |\lambda|, \ \lambda \in \mathcal{R}(T) \} \) and \(\gamma(T) = \inf\{ |T x||, \ x \in \mathcal{N}(T) \} \) and \(|x| = 1 \). It is well known that \(\gamma(T) \geq 0 \) if and only if \(R(T) \) is closed and that \(w(T) \) is a norm on the Banach algebra \(\mathcal{L}(\mathcal{H}) \) (for more detail about the concept of numerical radius, see for example [4,9]). Moreover for \(T \in \mathcal{L}(\mathcal{H}) \), we have

\[
w(T) \leq |T|| \leq 2w(T),
\]

and that for a normal operator \(T \) ([3]), one has

\[
r(T) = w(T) = |T||
\]

\(\mathcal{L}(\mathcal{H})^{+} \) is the cone of positive operators, i.e.

\[
\mathcal{L}(\mathcal{H})^{+} = \{ A \in \mathcal{L}(\mathcal{H}) : \langle Ax | x \rangle \geq 0, \ \forall x \in \mathcal{H} \}.
\]

Any positive operator \(A \in \mathcal{L}(\mathcal{H})^{+} \) defines a positive semi-definite sesquilinear form

\[
\langle \cdot , \cdot \rangle_{A} : \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{C}, \ \langle x | y \rangle_{A} = \langle Ax | y \rangle.
\]

By \(\| \cdot \|_{A} \) we denote the seminorm induced by \(\langle \cdot , \cdot \rangle_{A} \), i.e., \(\| x \|_{A} = \langle x | x \rangle_{A}^{\frac{1}{2}} \). Note that \(\| x \|_{A} = 0 \) if and only if \(x \in N(A) \). Then \(\| \cdot \|_{A} \) is a norm on \(\mathcal{H} \) if and only if \(A \) is an injective operator, and the semi-normed space \(\langle \mathcal{L}(\mathcal{H}), \| \cdot \|_{A} \rangle \) is complete if and only if \(R(A) \) is closed. Moreover \(\langle \cdot , \cdot \rangle_{A} \) induces a seminorm on the subspace \(\{ T \in \mathcal{L}(\mathcal{H}) : \exists c > 0, \ |T x|| \leq c\|x\|_{A}, \ \forall x \in \mathcal{H} \} \). For this subspace of operators it holds

\[
\| T \|_{A} = \sup_{x \in R(A), x \neq 0} \frac{\| Tx \|_{A}}{\| x \|_{A}} < \infty,
\]

Moreover

\[
\| T \|_{A} = \sup\{ |\langle Tx | y \rangle_{A}|; \ x, y \in \mathcal{H} \ \text{and} \ \| x \|_{A} \leq 1, \| y \|_{A} \leq 1 \}.
\]

For \(x, y \in \mathcal{H} \), we say that \(x \) and \(y \) are \(A \)-orthogonal if \(\langle x | y \rangle_{A} = 0 \). Note that this definition is a natural extension of the usual notion of orthogonality which represents the \(I \)-orthogonality case. For a set \(S \subset \mathcal{H} \), its \(A \)-orthogonal subspace \(S^{\perp_{A}} \) is given by

\[
S^{\perp_{A}} = \{ x \in \mathcal{H}; \langle x | y \rangle_{A} = 0, \ \forall y \in S \}.
\]

Note that \(S^{\perp_{A}} = (AS)^{\perp} = A^{-1}(S^{\perp}) \) and since \(A(A^{-1}(S) = S \cap R(A) \), then \((S^{\perp_{A}})^{\perp_{A}} = (S^{\perp} \cap R(A))^{-1} \). The concept of \(A \)-spectral radius, \(A \)-numerical radius and \(A \)-minimum modulus of an operator are a natural generalization of the spectral radius, the numerical radius and the minimum modulus respectively. In the next, we give the following definition.

Definition 1.1. Let \(T \in \mathcal{L}(\mathcal{H}) \). The \(A \)-spectral radius, the \(A \)-numerical radius and the \(A \)-minimum modulus of \(T \) are denoted respectively \(r_{A}(T) \), \(w_{A}(T) \) and \(\gamma_{A}(T) \) and they are defined as

\[
r_{A}(T) = \lim_{n \rightarrow +\infty} \sup ||T^{n}||^{\frac{1}{n}}_{A}
\]
\[w_A(T) = \sup\{ |\langle Tx | x \rangle_A| \; x \in \mathcal{H}, \| x \|_A = 1 \} \]

and
\[\gamma_A(T) = \inf\{ \| Tx \|_A; x \in N(A^{\frac{1}{2}} T)^{\perp A} \text{ and } \| x \|_A = 1 \}. \]

For any \(T, S \in \mathcal{L}(\mathcal{H}) \), the following properties are immediate:

1. \(w_A(T) \geq 0 \) and \(w_A(T) = 0 \) if and only if \(AT = 0 \).
2. \(w_A(\lambda T) = |\lambda| w_A(T) \) for any \(\lambda \in \mathbb{C} \).
3. \(w_A(T + S) \leq w_A(T) + w_A(S) \).
4. \(\forall x \in \mathcal{H}, |\langle Tx | x \rangle_A| \leq w_A(T) \| x \|^2_A \leq \| T \|_A \| x \|^2_A \) and \(\| Tx \|_A \geq \gamma_A(T) d_A(x, N(A^{\frac{1}{2}} T)) \) where \(d_A(x, V) = \inf \{ \| x - y \|_A; y \in V \} \) for any \(V \subset \mathcal{H} \).

Note that \(w_A(.) \) is a seminorm on \(\mathcal{L}(\mathcal{H}) \) and it is a norm if \(A \) is injective. Moreover \(w_A(T) \leq \| T \|_A \) for any \(T \in \mathcal{L}(\mathcal{H}) \). The following theorem due to Douglas will be used (see [5] for its proof).

Theorem 1.1. Let \(T, S \in \mathcal{L}(\mathcal{H}) \). The following conditions are equivalent.

1. \(R(S) \subset R(T) \).
2. There exists a positive number \(\lambda \) such that \(SS^* \leq \lambda TT^* \).
3. There exists \(W \in \mathcal{L}(\mathcal{H}) \) such that \(TW = S \).

From now on, \(A \) denotes a positive operator on \(\mathcal{H} \) (i.e. \(A \in \mathcal{L}(\mathcal{H})^+ \)).

Definition 1.2. Let \(T \in \mathcal{L}(\mathcal{H}) \), an operator \(W \in \mathcal{L}(\mathcal{H}) \) is called an \(A \)-adjoint of \(T \) if
\[\langle Tu | v \rangle_A = \langle u | Wv \rangle_A \quad \text{for every } u, v \in \mathcal{H}, \]

or equivalently
\[AW = T^* A; \]

\(T \) is called \(A \)-selfadjoint if \(AT = T^* A \) and it is called \(A \)-positive if \(AT \) is positive.

By Douglas Theorem, an operator \(T \in \mathcal{L}(\mathcal{H}) \) admits an \(A \)-adjoint if and only if \(R(T^* A) \subset R(A) \) and if \(W \) is an \(A \)-adjoint of \(T \) and \(AZ = 0 \) for some \(Z \in \mathcal{L}(\mathcal{H}) \) then \(W + Z \) is also an \(A \)-adjoint of \(T \). Hence neither the existence nor the uniqueness of an \(A \)-adjoint operator is guaranteed. In fact an operator \(T \in \mathcal{L}(\mathcal{H}) \) may admit none, one or many \(A \)-adjoints.

From now on, \(\mathcal{L}_A(\mathcal{H}) \) denotes the set of all \(T \in \mathcal{L}(\mathcal{H}) \) which admit an \(A \)-adjoint, i.e.
\[\mathcal{L}_A(\mathcal{H}) = \{ T \in \mathcal{L}(\mathcal{H}) : R(T^* A) \subset R(A) \}. \]

\(\mathcal{L}_A(\mathcal{H}) \) is a subalgebra of \(\mathcal{L}(\mathcal{H}) \) which is neither closed nor dense in \(\mathcal{L}(\mathcal{H}) \).

On the other hand the set of all \(A \)-bounded operators in \(\mathcal{L}(\mathcal{H}) \) (i.e. with respect the seminorm \(\| . \|_A \)) is
\[\mathcal{L}_{A^\frac{1}{2}}(\mathcal{H}) = \{ T \in \mathcal{L}(\mathcal{H}) : T^* R(A^{\frac{1}{2}}) \subset R(A^{\frac{1}{2}}) \} = \{ T \in \mathcal{L}(\mathcal{H}) : R(A^{\frac{1}{2}} T^* A^{\frac{1}{2}}) \subset R(A) \}. \]

Note that \(\mathcal{L}_A(\mathcal{H}) \subset \mathcal{L}_{A^\frac{1}{2}}(\mathcal{H}) \), which shows that if \(T \) admits an \(A \)-adjoint then it is \(A \)-bounded. Section 2, contains some inequalities giving upper bounds of the difference between the \(A \)-norm and \(A \)-numerical radius of an \(A \)-bounded operator in semi-Hilbertian spaces and under appropriate conditions. In section 3, we introduce the notion of \(A \)-normal operators, we prove a characterization involving the \(A \)-norm, \(\| . \|_A \), we give some properties on \(A \)-normal operators, then we establish new operator norm inequalities. Our inequalities generalize the well known properties for normal operators.
2. Inequalities involving A-Numerical Radius

If \(T \in \mathcal{L}(\mathcal{H}) \) with \(R(T^*A) \subseteq R(A) \), then \(T \), admits an \(A \)-adjoint operator, Moreover there exists a distinguished \(A \)-adjoint operator of \(T \), namely, the reduced solution of the equation \(AX = T^*A \), i.e. \(T^\dagger = A^\dagger T^*A \), where \(T^\dagger \) is the Moore-Penrose inverse of \(T \). The \(A \)-adjoint operator \(T^\dagger \) verifies

\[
AT^\dagger = T^*A, \quad R(T^\dagger) \subseteq R(A) \quad \text{and} \quad N(T^\dagger) = N(T^*A).
\]

In the next we add without proof some important properties of \(T^\dagger \) (for more details we refer the reader to [1] and [2]).

Theorem 2.1. Let \(T \in \mathcal{L}_A(\mathcal{H}) \). Then

1. If \(AT = TA \) then \(T^\dagger = PT^* \).
2. \(T^\dagger T \) and \(TT^\dagger \) are \(A \)-selfadjoint and \(A \)-positive.
3. \(\|T\|^2_A = \|T^\dagger\|^2_A = \|T^\dagger T\| = \|TT^\dagger\| = w_A(T^\dagger T) = w_A(TT^\dagger) \).
4. \(\|S\|_A = \|T^\dagger\|_A \) for every \(S \in \mathcal{L}(\mathcal{H}) \) which is an \(A \)-adjoint of \(T \).
5. If \(S \in \mathcal{L}_A(\mathcal{H}) \) then \(ST \in \mathcal{L}_A(\mathcal{H}) \), \((ST)^\dagger = T^\dagger S^\dagger \) and \(\|TS\|_A = \|ST\|_A \).
6. \(T^\dagger \in \mathcal{L}_A(\mathcal{H}) \), \((T^\dagger)^\dagger = PT^P \) and \((T^\dagger)^2 = T^\dagger \).
7. \(\|T^\dagger\| \leq \|S\| \) for every \(S \in \mathcal{L}(\mathcal{H}) \) which is an \(A \)-adjoint of \(T \). Nevertheless, \(T^\dagger \) is not in general the unique \(A \)-adjoint of \(T \) that realizes the minimal norm.

Lemma 2.1. Let \(T \in \mathcal{L}_A(\mathcal{H}) \). If \(M \) is an invariant subspace for \(T \) and \(T^\dagger \), then \(M^\perp_A \) is also invariant for \(T \) and \(T^\dagger \).

Proof. Let \(x \in M^\perp_A \), and \(y \in M \), then \(\langle Tx | y \rangle_A = \langle x | T^\dagger y \rangle_A = 0 \), since \(T^\dagger y \in M \). Thus \(Tx \in M^\perp_A \), so \(T(M^\perp_A) \subseteq M^\perp_A \). Similarly, we show that \(T^\dagger(M^\perp_A) \subseteq M^\perp_A \).

In the following, we establish various inequalities between the operator seminorm \(\|\cdot\|_A \) and the \(A \)-numerical radius \(w_A(\cdot) \) of operators in semi-Hilbertian spaces.

Theorem 2.2. Let \(T \in \mathcal{L}_A(\mathcal{H}) \), \(\lambda \in \mathbb{C} \) and \(\alpha \geq 0 \) are such that \(\|T - \lambda I\|_A \leq \alpha \). Then

\[
(0 \leq \lambda)(\|T\|_A - w_A(T)) \leq \frac{\alpha^2}{2}
\]

Moreover, if \(|\lambda| > \alpha \) then

\[
\sqrt{1 - \frac{\alpha^2}{|\lambda|^2} \|T\|_A} \leq w_A(T) \leq \|T\|_A
\]

Proof. Since \(\|T - \lambda I\|_A \leq \alpha \) then for \(x \in \mathcal{H} \) with \(\|x\|_A = 1 \), we have \(\|Tx - \lambda x\|_A \leq \alpha \), or equivalently \(\|Tx - \lambda x\|^2_A \leq \alpha^2 \), which implies that

\[
\|Tx\|^2_A + \|\lambda\|^2 \leq 2\Re(\langle Tx | x \rangle_A) + \alpha^2 \leq 2|\lambda|\|Tx | x \rangle_A| + \alpha^2
\]

By taking the supremum over \(x \in \mathcal{H} \), \(\|x\|_A = 1 \), it follows

\[
2|\lambda|\|T\|_A \leq \|T\|^2_A + \|\lambda\|^2 \leq 2|\lambda|w_A(T) + \alpha^2
\]

Hence the desired inequality (2.1) is obtained.

Now if \(|\lambda| > \alpha \), on dividing with \(|\lambda|^2 \) in (2.3) we obtain

\[
\frac{\|T\|^2_A}{|\lambda|^2} + 1 \leq 2 \frac{w_A(T)}{|\lambda|} + \frac{\alpha^2}{|\lambda|^2}
\]
then by using an elementary inequality, we deduce

$$2\sqrt{1 - \frac{\alpha^2}{|\lambda|^2}} \frac{||T||_A}{|\lambda|} \leq \frac{||T||_A^2}{|\lambda|^2} + 1 - \frac{\alpha^2}{|\lambda|^2} \leq 2 w_A(T)$$

from which the inequality (2.2) is easily holds.

Remark 2.1. Note that for $T \in \mathcal{L}_A(H)$, $\lambda \in \mathbb{C}$ and $|\lambda| > \alpha \geq 0$ such that $||T - \lambda I||_A \leq \alpha$, (1.1) and (2.2) lead a refinement and improve (1.1) and they provide the following inequalities

$$w_A(T) \leq ||T||_A \leq \sqrt{\frac{||T||_A^2}{|\lambda|^2 - \alpha^2} w_A(T)} \leq 2 w_A(T), \text{ if } \frac{\alpha}{|\lambda|} \leq \frac{\sqrt{3}}{2}$$

Using the fact that for $x, y, z \in \mathcal{H}$, one has

$$Re\langle y - x|x - z\rangle_A \geq 0 \iff ||x - \frac{y + z}{2}||_A \leq \frac{1}{2}||y - z||_A$$

and by applying Theorem 2.2, (2.1), the following corollary is immediately deduced.

Corollary 2.3. Let $T \in \mathcal{L}_A(H)$, $\lambda, \mu \in \mathbb{C}$, $\lambda \neq \mu$. If $Re\langle \lambda x - Tx|Tx + \mu x\rangle_A \geq 0$, for all $x \in \mathcal{H}$ then

$$0 \leq ||T||_A - w_A(T) \leq \frac{1}{4} \frac{||\lambda + \mu||^2}{|\lambda - \mu|}$$

Remark 2.2. Note that in the literature, the condition $Re\langle \lambda x - Tx|Tx + \mu x\rangle_A \geq 0$, $x \in \mathcal{H}$ means that the operator

$$(T^2 + \mu I)A(\lambda I - T)$$

is accretive.

On squaring (2.2) and replacing λ by $\frac{\lambda - \alpha}{2}$, α by $\frac{|\lambda + \alpha|}{2}$, the following corollary follows

Corollary 2.4. Let $T \in \mathcal{L}_A(H)$, $\lambda, \mu \in \mathbb{C}$, with $Re\langle \lambda \mu \rangle \leq 0$. If T verifies (2.5), then

$$0 \leq ||T||_A^2 - w_A(T)^2 \leq \frac{||\lambda + \mu||^2}{|\lambda - \mu|^2} ||T||_A^2.$$

and

$$\frac{2\sqrt{-Re\langle \lambda \mu \rangle}}{|\lambda - \mu|} ||T||_A \leq w_A(T)$$

in particular if we choose $\lambda = -\mu > 0$, we get

$$||T||_A = w_A(T).$$

3. **A-NORMAL OPERATORS**

In the following we introduce the notion of A-normal operators.

Definition 3.1. An operator $T \in \mathcal{L}_A(H)$ is called an A-normal operator if $T^2 = TT^4$.

A-normal operators may be regarded as a generalization of normal and self-adjoint operators in which $T^2 = T^*$. This last property is realized in particular if $A = I$ or if T and A commute and A has a dense range. The identity operator and the orthogonal projection on $\overline{R(A)}$ are A-normal. Moreover, if T is an A-normal then $\{TS, T^2 + S, TS = ST, S = S^2\}$ is a set of A-normal operators.

AJMAA, Vol. 9, No. 1, Art. 5, pp. 1-12, 2012
Another characterization is that $T \in \mathcal{L}_A(\mathcal{H})$ is an A-normal operator if and only if there are A-selfadjoint operators $B, C \in \mathcal{L}_A(\mathcal{H})$ such that $BC = CB$ and $T = B + iC$, $(i^2 = -1)$.

From now on, to simplify notation, we write P instead of $P_{R(A)}$. An important property of A-normal operators that will be used frequently in the sequel is the following:

Theorem 3.1. A necessary and sufficient condition for an operator $T \in \mathcal{L}_A(\mathcal{H})$ to be A-normal is that $R(T^*T) \subset R(A)$ and $\|Tx\|_A = \|T^Tx\|_A$ for every vector $x \in \mathcal{H}$.

Proof. Suppose that T is A-normal. It is easily to see that $R(T^*T) = R(T^2T) \subset R(A)$. Moreover, using the fact that TT^* is A-selfadjoint, then for $x \in \mathcal{H}$, we obtain,

$$T^2T = TT^* \iff \langle T^2Tx|x \rangle_A = \langle TT^*x|x \rangle_A$$

$$\iff \langle AT^2x|x \rangle = \langle ATT^*x|x \rangle$$

$$\iff \langle TAT^2x|x \rangle = \langle (T^*T)^*Ax|x \rangle$$

$$\iff \langle ATx|Tx \rangle = \langle T^*Ax|T^2x \rangle$$

$$\iff ||Tx||_A = ||T^2x||_A$$

Conversely, if $||Tx||_A = ||T^2x||_A$, then $A(T^2T - TT^*) = 0$, if moreover $R(T^*T) \subset R(A)$, so, it follows $R(T^2T - TT^*) \subset R(A) = N(A)^\perp$ and hence $T^2T - TT^* = 0$, which finishes the proof.

In the next we give some properties on A-normal operators.

Corollary 3.2. For $T \in \mathcal{L}_A(\mathcal{H})$, the following properties hold

1. If T is A-selfadjoint operator then $||T||_A = w_A(T)$.
2. If T is A-normal operator then T^n is also for all $n \geq 1$ and $||T||_A = r_A(T)$.
3. Suppose that $N(A)$ is an invariant subspace for T and $\lambda, \mu \in \mathbb{C}$. If T is A-normal, then
 (a) $T - \lambda I$ and T^* are A-normal.
 (b) $Tx = \lambda x$ yields $T^*x = \overline{\lambda} Px$.
 (c) $M = \{x \in \mathcal{H}/Tx = \lambda x\}$ and M^{\perp_A} are invariant for T and T^*.
 (d) $Tx = \lambda x$ and $Ty = \mu y$, $\lambda \neq \mu$ yield $x \perp_A y$ (i.e. $\langle x|y \rangle_A = 0$).

Proof.

1. It is clear that $\sup_{||x||_A = ||y||_A = 1} |\langle Tx|y \rangle_A| \leq ||T||_A$. In the other hand, if we choose $z = \frac{T^*_x}{||T^*_x||_A}$, we obtain

$$||Tx||_A = \langle Tx|z \rangle_A \leq \sup_{||x||_A = ||y||_A = 1} |\langle Tx|y \rangle_A|$$

Moreover, without loss of generality we can suppose $x, y \neq 0$ and that $\langle Tx|y \rangle_A > 0$, then one has

$$\langle T(x + y)|x + y \rangle_A = \langle Tx|x \rangle_A + \langle Tx|y \rangle_A + \langle y|T^2x \rangle_A + \langle Ty|y \rangle_A$$

and

$$\langle T(x - y)|x - y \rangle_A = \langle Tx|x \rangle_A - \langle Tx|y \rangle_A - \langle y|T^2x \rangle_A + \langle Ty|y \rangle_A$$
If T is A-selfadjoint then, by parallelogram law

$$
\langle Tx|y\rangle_A = \frac{1}{2} |\langle Tx|y\rangle_A + \langle T^*x|y\rangle_A| = \frac{1}{2} |\langle T(x + y)|x + y\rangle_A - \langle T(x - y)|x - y\rangle_A|
$$

\[\leq \frac{w_A(T)}{2} (||x + y||^2_A + ||x - y||^2_A)\]

\[\leq w_A(T)(||x||^2_A + ||y||^2_A)\]

If we replace x by $\sqrt{\alpha}x$ and y by $\frac{y}{\sqrt{\alpha}}$, where $\alpha = \frac{||x||_A}{||y||_A}$, we get

$$
\langle Tx|y\rangle_A = |\langle Tx|y\rangle_A + \langle T^*x|y\rangle_A| = \frac{w_A(T)}{2} (||x||^2_A + ||y||^2_A)
$$

$$
= w_A(T)||x||_A||y||_A.
$$

which implies, $w_A(T) \leq ||T||_A$ and thus,

$$
||T||_A = \sup \{|\langle Tx|y\rangle_A|; ||x||_A = ||y||_A = 1\} = w_A(T)
$$

(2) Let $n \geq 1$, if T is A-normal operator then, T and T^2 commute, consequently T^n and $(T^2)^n$ commute. Thus T^n is A-normal. Let $x \in \mathcal{H}$, we have

$$
||T^2Tx||^2_A = \langle T^2Tx|T^2Tx\rangle_A = \langle T^2x|T^2x\rangle_A = ||T^2x||^2_A
$$

$$
||Tx||^2_A = \langle Tx|Tx\rangle_A = \langle T^2x|Tx\rangle_A = ||T^2x||_A
$$

Since T^2T is A-selfadjoint then by taking the supremum on $||x||_A = 1$ and applying 1. we get

$$
||T||^2_A = \sup_{||x||_A = 1} ||Tx||^2_A = \sup_{||x||_A = 1} \langle T^2Tx\rangle_A
$$

$$
= \sup_{||x||_A = 1} ||T^2Tx||_A
$$

Moreover for all $n \geq 1$ we have

$$
||T^n||^2_A = \langle T^n|T^n\rangle_A = \langle T^2T^{n-1}x|T^{n-1}x\rangle_A \leq ||T^2T^{n-1}x||_A||T^{n-1}x||_A
$$

which implies

$$
||T^n||^2_A \leq ||T^{n+1}||_A||T^{n-1}||_A
$$

Assume that $||T||_A > 0$ then $||T^n||_A > 0$ for all $n \geq 1$ (for $||T||_A = 0$ the desired property is evident) and set $\alpha_n = \frac{||T^{n+1}||_A}{||T^n||_A}$, $n \geq 1$. It is clear that $(\alpha_n)_n$ is an increasing sequence, then it satisfies

$$
\frac{||T^{n+1}||_A}{||T^n||_A} = \alpha_n \geq \alpha_1 = \frac{||T^2||_A}{||T||_A} = \frac{||T||^2_A}{||T||_A} = ||T||_A.
$$

By an induction argument, it follows $||T^n||_A = ||T||^n_A$, for all $n \geq 1$.

Thus $r_A(T) = ||T^n||^\frac{1}{n}_A = ||T||_A$ and the proof is achieved.

(3) (a) Note first that since $N(A)$ is invariant for T, then $TP = PT$ and $AP = PA = A$.

Let now $\lambda \in \mathbb{C}$, we have $(T - \lambda I)(T - \lambda I)^* = (T - \lambda I)(T^2 - \lambda T^2 - \lambda T^3 - \lambda T^5 - \lambda T^7 - \lambda T^9 - \lambda T^{11} + \lambda^2 P = T^2T - \lambda T^2 - \lambda T^3 - \lambda T^5 - \lambda T^7 - \lambda T^9 - \lambda T^{11})$.

\[= (T - \lambda I)(T - \lambda I)^* = T^2T - \lambda T^2 - \lambda T^3 - \lambda T^5 - \lambda T^7 - \lambda T^9 - \lambda T^{11} + \lambda^2 P = (T - \lambda I)^2(T - \lambda I),\]
then \((T - \lambda I)\) is \(A\)-normal.
For all \(x \in \mathcal{H}\), we have also
\[
||((T^2)^*x)||^2_A = \langle (T^2)^*x|(T^2)^*x \rangle_A \\
= \langle PTPx|PTPx \rangle_A \\
= \langle TPx|TPx \rangle_A \\
= ||TPx||^2_A \\
= ||Tx||^2_A = ||T^2x||^2_A
\]

It clear that \(R(T^2(T^2)^*) \subset R(A^2)\), so from Theorem 3.1, it follows that \(T^2\) is \(A\)-normal.

(b) Using (a),
\[
||\sqrt{A}(T^2 - \lambda P)x|| = ||(T^2 - \lambda P)x||_A \\
= ||(T - \lambda I)^2x||_A \\
= ||(T - \lambda I)x||_A = 0
\]
or \(R(T^2 - \lambda P) \subset R(A) = N(A)^1\), then \(T^2x = \lambda P\).

(c) Let \(M = \{x \in \mathcal{H} | Tx = \lambda x\}\). It is clear that \(T(M) \subset M\). Moreover if \(x \in M\) and \(y = T^2x\), then \(Ty = TT^2x = T^2Tx = \lambda T^2x = \lambda y\) yields \(y = Tx \in M\). Hence \(M\) is invariant for both \(T\) and \(T^2\). Using Lemma 2.1 the desired result follows.

(d) Suppose that \(Tx = \lambda x\), \(Ty = \mu y\) with \(0 \neq \lambda \neq \mu\),
\[
\langle x|y \rangle_A = \lambda^{-1}\langle Tx|y \rangle_A = \lambda^{-1}\langle x|T^2y \rangle_A = \lambda^{-1}\mu \langle x|Py \rangle_A = \lambda^{-1}\mu \langle x|y \rangle_A,
\]
then \(\langle x|y \rangle_A = 0\). If \(\lambda = 0\) we permute between \(\lambda\) and \(\mu\) and the proof achieved.

Question: If \(T\) is \(A\)-normal, is it true that \(||T||_A = w_A(T)\)?

Note that in the Cauchy-Schwarz inequality i.e.
\[
||\langle u|v \rangle|| \leq ||u|| \times ||v||, \; u, v \in \mathcal{H}
\]
if, we choose \(u = \sqrt{Ax}\) and \(v = \sqrt{Ay}\) we obtain more general formula
\[
||\langle x|y \rangle_A|| \leq ||x||_A \times ||y||_A, \; x, y \in \mathcal{H}
\]
Moreover, for the choices \(Tx\) instead of \(x\) and \(T^2x\) instead of \(y\) with \(x \in \mathcal{H}\), then one gets the following simple inequality for the \(A\)-normal operator \(T\):
\[
||\langle T^2x|x \rangle_A|| \leq ||Tx||^2_A, \; x \in \mathcal{H}
\]

Note that the inequality (3.3) implies in particular that
\[
w_A(T^2) \leq ||T||^2_A.
\]
Note also that the inequality (3.3) becomes an equality if \(T\) is an \(A\)-selfadjoint operator. This property does not remain true for \(A\)-normal operators. Indeed if consider the operators \(\mathcal{H} = \mathbb{C}^2, \; A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \in \mathcal{L}(\mathcal{H})^+, \; T = \begin{pmatrix} r & r \\ -r & r \end{pmatrix} \in \mathcal{L}(\mathcal{H})\) for some \(a > 0\) and \(r \neq 0\). It is easy to check that \(T\) admits \(A\)-adjoint operators and by direct computation, we see that \(T\) is an \(A\)-normal operator and that (3.3) is a real inequality.

It is then natural to discuss some estimations of the quantity \(||Tx||^2_A - ||\langle T^2x|x \rangle_A||\) for \(A\)-normal operators and give a measure of the closeness of the two terms involved in (3.3).
Motivated by this problem, we will study in this section some inequalities of A-normal operators in semi-Hilbertian spaces by employing some known results for vectors in inner product spaces.

We start with the following result.

Theorem 3.3. Let $T \in \mathcal{L}_A(\mathcal{H})$ be an A-normal operator; then the inequalities

$$
|\langle Tx|x \rangle_A|^2 \leq \frac{1}{2} (||Tx||_A^2 + ||T^2x||_A) \leq ||Tx||_A^2
$$

(3.4)

hold for all $x \in \mathcal{H}$, $||x||_A = 1$. The constant $\frac{1}{2}$ is the best possible in (3.4).

Proof. The second inequality in (3.4) hold immediately from (3.3). For the first one we use the inequality, which is a consequence of the inequalities (2.3) in [6].

If we choose $e = x$, $||x||_A = 1$, $a = Tx$, and $b = T^2x$, then we obtain

$$
|\langle Tx|x \rangle_A \langle x|T^2x \rangle_A| \leq \frac{1}{2} (||Tx||_A \||T^2x||_A + ||Tx|T^2x \rangle_A)
$$

(3.6)

for all $x \in \mathcal{H}$ and $||x||_A = 1$.

Since T is A-normal, then $||Tx||_A = ||T^2x||_A$ and the desired inequality follows from (3.6).

If we suppose now that $T = I$ is the identity operator, then both the two inequalities in (3.4) become equalities, this means that $\frac{1}{2}$ is the best possible constant in (3.4).

The following result is obviously deduced from Theorem 3.3.

Corollary 3.4. If $T \in \mathcal{L}_A(\mathcal{H})$ is an A-normal operator, then

$$
w_A(T)^2 \leq \frac{1}{2} (||T||_A^2 + w_A(T^2)) \leq ||T||_A^2.
$$

(3.7)

The following result provides an upper bound for the nonnegative quantity

$$
||Tx||_A^2 - |\langle Tx|T^2x \rangle_A|, \ x \in \mathcal{H}
$$

Theorem 3.5. Let $T \in \mathcal{L}_A(\mathcal{H})$ be an A-normal operator and $\lambda \in \mathbb{C}$, then

$$
0 \leq ||Tx||_A^2 - |\langle Tx|T^2x \rangle_A| \leq \frac{2}{1 + |\lambda|^2} ||Tx - \lambda T^2x||_A^2
$$

(3.8)

for any $x \in \mathcal{H}$.

Proof. For $\lambda = 0$, the inequality in (3.8) is obvious. For $\lambda \neq 0$, we use the Dunkl-Williams inequality [8].

$$
\frac{||a|| \ ||b|| - |\langle a|b \rangle|}{||a|| \ ||b||} \leq \frac{2||a - b||^2}{(||a|| + ||b||)^2}, \ a, b \in \mathcal{H}\{0\}
$$

which shows that

$$
\frac{||a||_A \ ||b||_A - |\langle a|b \rangle|_A}{||a||_A \ ||b||_A} \leq \frac{2||a - b||_A^2}{(||a||_A + ||b||_A)^2}, \ a, b \notin N(A)
$$

(3.9)

Now, taking into account that T is an A-normal operator, we choose in (3.9) $a = Tx$ and $b = \lambda T^2x$, $\lambda \neq 0$, $x \notin N(A^\dagger T)$, so from Theorem 3.1 one gets

$$
\frac{||Tx||_A^2 - |\langle Tx|T^2x \rangle_A|}{||Tx||_A^2} \leq \frac{2||Tx - \lambda T^2x||_A^2}{(1 + |\lambda|^2)^2 ||Tx||_A^2}
$$

(3.10)
which immediately implies (3.8).

Since for A-normal operators $N(A^{\frac{1}{2}}T) = N(A^{\frac{1}{2}}T^2)$ then, the inequality (3.8) holds also for $x \in N(A^{\frac{1}{2}}T)$ and so the proof is achieved.

Corollary 3.6. If $T \in \mathcal{L}_A(\mathcal{H})$ is an A-normal operator, then

$$w_A(T)^2 - w_A(T^2) \leq \frac{1}{2}(||T||^2_A - w_A(T^2)) \leq \frac{1}{1 + ||\lambda||^2}||T - \lambda T^2||^2_A.$$ for all $\lambda \in \mathbb{C}$

The next technic result generalizes Lemma 2.1, [6].

Lemma 3.1. Let $a, b \notin N(A)$ and $0 < \varepsilon \leq \frac{1}{2}$, such that

$$0 \leq 1 - \varepsilon - \sqrt{1 - 2\varepsilon} \leq \frac{||a||_A}{||b||_A} \leq 1 - \varepsilon + \sqrt{1 - 2\varepsilon}.$$ Then

(3.10) $$0 \leq ||a||_A \ ||b||_A - Re(a\langle b\rangle)_A \leq \varepsilon ||a - b||^2_A.$$

Using Lemma 3.1, the following similar result may be stated

Theorem 3.7. Let $T \in \mathcal{L}_A(\mathcal{H})$ be an A-normal operator, $\lambda \in \mathbb{C}$ and $0 < \varepsilon \leq \frac{1}{2}$ such that

$$0 \leq 1 - \varepsilon - \sqrt{1 - 2\varepsilon} \leq |\lambda| \leq 1 - \varepsilon + \sqrt{1 - 2\varepsilon}.$$ Then

(3.11) $$0 \leq ||Tx||^2_A - |\langle T^2x|_A|| \leq \frac{\varepsilon}{|\lambda|}||Tx - \lambda T^2x||^2_A$$ for any $x \in \mathcal{H}$

Proof. By choosing $a = \lambda T^2x$ and $b = Tx$, $x \notin N(A^{\frac{1}{2}}T^2)$ in Lemma 3.1, we have

$$0 \leq ||\lambda T^2x||_A \ ||Tx||_A - Re(\lambda T^2x|Tx)_A \leq \varepsilon ||\lambda T^2x - Tx||^2_A.$$ or $0 \leq ||Tx||^2_A - |\langle T^2x|_A|| \leq |||Tx||_A \ ||Tx||_A \ ||T^2x||_A$ and $Re(\lambda T^2x|Tx)_A \leq |\lambda| |\langle T^2x|_A||$, T being an A-normal operator, then (3.11) holds for any $x \notin N(A^{\frac{1}{2}}T^2)$.

Since $N(A^{\frac{1}{2}}T^2) = N(A^{\frac{1}{2}}T)$, then for $x \in N(A^{\frac{1}{2}}T)$ it is clear that the inequality (3.11) is checked. Therefore, (3.11) holds for any $x \in \mathcal{H}$.

The following corollary may be stated

Corollary 3.8. Let $T \in \mathcal{L}_A(\mathcal{H})$ be an A-normal operator, $\lambda \in \mathbb{C}$ and $0 < \varepsilon \leq \frac{1}{2}$ such that

$$0 \leq 1 - \varepsilon - \sqrt{1 - 2\varepsilon} \leq |\lambda| \leq 1 - \varepsilon + \sqrt{1 - 2\varepsilon}.$$ Then

(3.12) $$0 \leq ||T||^2_A - w_A(T^2) \leq \frac{\varepsilon}{|\lambda|}||T - \lambda T^2||^2_A$$

Theorem 3.9. Let $T \in \mathcal{L}_A(\mathcal{H})$ be an A-normal operator and $\lambda \in \mathbb{C} \setminus \{0\}$. Then

(3.13) $$0 \leq ||T||^2_A - w_A(T^2)^2 \leq \frac{1}{|\lambda|^2}||T||^2_A ||T - \lambda T^2||^2_A$$
Proof. We use the following inequality obtained by Dragomir (see [7],(2.10)).

\[0 \leq ||a||^2 ||b||^2 - ||a||^2 \leq \frac{1}{|\lambda|^2} ||a||^2 ||a - \lambda b||^2 \]

provided \(a, b \in \mathcal{H} \) and \(\lambda \in \mathbb{C} \setminus \{0\} \).

Immediately on choosing \(a = \sqrt{AT}x \) and \(b = \sqrt{AT^*x} \), one gets,

\[0 \leq ||Tx||^2 ||T^*x||_A^2 - ||Tx||^2 ||T^*x - \lambda T^*x||^2_A \leq \frac{1}{|\lambda|^2} ||Tx||^2 ||T^*x - \lambda T^*x||^2_A \]

provided \(x \in \mathcal{H} \) and \(\lambda \in \mathbb{C} \setminus \{0\} \).

Since \(T \) is an \(A \)-normal operator, we obtain

\[0 \leq ||Tx||^2_A - ||T^2x||_{A^2}^2 \leq \frac{1}{|\lambda|^2} ||Tx||^2_A ||T^*x - \lambda T^*x||^2._A. \]

Hence the desired result (3.13) is obtained by taking the supremum on \(x \in \mathcal{H} \) with \(||x||_A = 1 \).

The following Lemma was proved by Mitrinović, Pečarić and Fink in ([10], p544).

Lemma 3.2. Let \(a, b \in \mathcal{H} \).

1. If \(p \in (1, 2) \), then

\[(||a|| + ||b||)^p + ||a|| - ||b|| ||a - b||^p \leq ||a + b||^p + ||a - b||^p \]

2. If \(p \geq 2 \), then

\[2(||a||^p + ||b||^p) \leq ||a + b||^p + ||a - b||^p \]

By choosing in Lemma 3.2 \(a = \lambda \sqrt{AT}x \) and \(b = \mu \sqrt{AT^*x} \), for \(\lambda, \mu \in \mathbb{C} \), \(x \in \mathcal{H} \), then taking the supremum over \(x \in \mathcal{H} \), \(||x||_A = 1 \), we obtain the next result involving the seminorm \(||\cdot||_A \).

Theorem 3.10. Let \(T \in L_A(\mathcal{H}) \) be an \(A \)-normal operator and \(\lambda, \mu \in \mathbb{C} \). Then

1. If \(p \in (1, 2) \), then

\[(||\lambda|| + ||\mu||^p + ||\lambda|| - ||\mu||^p)||T||^p_A \leq ||\lambda T + \mu T^*||^p_A + ||\lambda T - \mu T^*||^p_A. \]

2. If \(p \geq 2 \), then

\[2(||\lambda||^p + ||\mu||^p)||T||^p_A \leq ||\lambda T + \mu T^*||^p_A + ||\lambda T - \mu T^*||^p_A. \]

Remark 3.1. In general, for \(T \in L_A(\mathcal{H}), \lambda, \mu \in \mathbb{C} \) and \(p \geq 2 \), we have

\[w_A \left(\frac{||\lambda||^2T^2T + ||\mu||^2T^2}{2} \right)^{\frac{p}{2}} \leq \frac{1}{4} \left(||\lambda T + \mu T^*||^p_A + ||\lambda T - \mu T^*||^p_A \right). \]

References

